Deng, Zihao
Multi-Robot Collaborative Navigation with Formation Adaptation
Deng, Zihao, Gao, Peng, Jose, Williard Joshua, Zhang, Hao
Multi-robot collaborative navigation is an essential ability where teamwork and synchronization are keys. In complex and uncertain environments, adaptive formation is vital, as rigid formations prove to be inadequate. The ability of robots to dynamically adjust their formation enables navigation through unpredictable spaces, maintaining cohesion, and effectively responding to environmental challenges. In this paper, we introduce a novel approach that uses bi-level learning framework. Specifically, we use graph learning at a high level for group coordination and reinforcement learning for individual navigation. We innovate by integrating a spring-damper model within the reinforcement learning reward mechanism, addressing the rigidity of traditional formation control methods. During execution, our approach enables a team of robots to successfully navigate challenging environments, maintain a desired formation shape, and dynamically adjust their formation scale based on environmental information. We conduct extensive experiments to evaluate our approach across three distinct formation scenarios in multi-robot navigation: circle, line, and wedge. Experimental results show that our approach achieves promising results and scalability on multi-robot navigation with formation adaptation.
Quantifying & Modeling Multimodal Interactions: An Information Decomposition Framework
Liang, Paul Pu, Cheng, Yun, Fan, Xiang, Ling, Chun Kai, Nie, Suzanne, Chen, Richard, Deng, Zihao, Allen, Nicholas, Auerbach, Randy, Mahmood, Faisal, Salakhutdinov, Ruslan, Morency, Louis-Philippe
The recent explosion of interest in multimodal applications has resulted in a wide selection of datasets and methods for representing and integrating information from different modalities. Despite these empirical advances, there remain fundamental research questions: How can we quantify the interactions that are necessary to solve a multimodal task? Subsequently, what are the most suitable multimodal models to capture these interactions? To answer these questions, we propose an information-theoretic approach to quantify the degree of redundancy, uniqueness, and synergy relating input modalities with an output task. We term these three measures as the PID statistics of a multimodal distribution (or PID for short), and introduce two new estimators for these PID statistics that scale to high-dimensional distributions. To validate PID estimation, we conduct extensive experiments on both synthetic datasets where the PID is known and on large-scale multimodal benchmarks where PID estimations are compared with human annotations. Finally, we demonstrate their usefulness in (1) quantifying interactions within multimodal datasets, (2) quantifying interactions captured by multimodal models, (3) principled approaches for model selection, and (4) three real-world case studies engaging with domain experts in pathology, mood prediction, and robotic perception where our framework helps to recommend strong multimodal models for each application.
Factorized Contrastive Learning: Going Beyond Multi-view Redundancy
Liang, Paul Pu, Deng, Zihao, Ma, Martin, Zou, James, Morency, Louis-Philippe, Salakhutdinov, Ruslan
In a wide range of multimodal tasks, contrastive learning has become a particularly appealing approach since it can successfully learn representations from abundant unlabeled data with only pairing information (e.g., image-caption or video-audio pairs). Underpinning these approaches is the assumption of multi-view redundancy - that shared information between modalities is necessary and sufficient for downstream tasks. However, in many real-world settings, task-relevant information is also contained in modality-unique regions: information that is only present in one modality but still relevant to the task. How can we learn self-supervised multimodal representations to capture both shared and unique information relevant to downstream tasks? This paper proposes FactorCL, a new multimodal representation learning method to go beyond multi-view redundancy. FactorCL is built from three new contributions: (1) factorizing task-relevant information into shared and unique representations, (2) capturing task-relevant information via maximizing MI lower bounds and removing task-irrelevant information via minimizing MI upper bounds, and (3) multimodal data augmentations to approximate task relevance without labels. On large-scale real-world datasets, FactorCL captures both shared and unique information and achieves state-of-the-art results on six benchmarks
MusiLingo: Bridging Music and Text with Pre-trained Language Models for Music Captioning and Query Response
Deng, Zihao, Ma, Yinghao, Liu, Yudong, Guo, Rongchen, Zhang, Ge, Chen, Wenhu, Huang, Wenhao, Benetos, Emmanouil
Large Language Models (LLMs) have shown immense potential in multimodal applications, yet the convergence of textual and musical domains remains relatively unexplored. To address this gap, we present MusiLingo, a novel system for music caption generation and music-related query responses. MusiLingo employs a single projection layer to align music representations from the pre-trained frozen music audio model MERT with the frozen Vicuna-7B language model (an adaption of LLaMA), bridging the gap between music audio and textual contexts. We train it on an extensive music caption dataset and fine-tune it with instructional data. Due to the scarcity of high-quality music Q\&A datasets, we created the Music Instruct (MI) dataset from captions in the MusicCaps datasets, tailored for open-ended music inquiries. Empirical evaluations demonstrate its competitive performance in generating music captions and composing music-related Q&A pairs.
Enhancing Cross-Category Learning in Recommendation Systems with Multi-Layer Embedding Training
Deng, Zihao, Ghaemmaghami, Benjamin, Singh, Ashish Kumar, Cho, Benjamin, Orshansky, Leo, Erez, Mattan, Orshansky, Michael
Modern DNN-based recommendation systems rely on training-derived embeddings of sparse features. Input sparsity makes obtaining high-quality embeddings for rarely-occurring categories harder as their representations are updated infrequently. We demonstrate a training-time technique to produce superior embeddings via effective cross-category learning and theoretically explain its surprising effectiveness. The scheme, termed the multi-layer embeddings training (MLET), trains embeddings using factorization of the embedding layer, with an inner dimension higher than the target embedding dimension. For inference efficiency, MLET converts the trained two-layer embedding into a single-layer one thus keeping inference-time model size unchanged. Empirical superiority of MLET is puzzling as its search space is not larger than that of the single-layer embedding. The strong dependence of MLET on the inner dimension is even more surprising. We develop a theory that explains both of these behaviors by showing that MLET creates an adaptive update mechanism modulated by the singular vectors of embeddings. When tested on multiple state-of-the-art recommendation models for click-through rate (CTR) prediction tasks, MLET consistently produces better models, especially for rare items. At constant model quality, MLET allows embedding dimension, and model size, reduction by up to 16x, and 5.8x on average, across the models.
MultiViz: Towards Visualizing and Understanding Multimodal Models
Liang, Paul Pu, Lyu, Yiwei, Chhablani, Gunjan, Jain, Nihal, Deng, Zihao, Wang, Xingbo, Morency, Louis-Philippe, Salakhutdinov, Ruslan
The promise of multimodal models for real-world applications has inspired research in visualizing and understanding their internal mechanics with the end goal of empowering stakeholders to visualize model behavior, perform model debugging, and promote trust in machine learning models. However, modern multimodal models are typically black-box neural networks, which makes it challenging to understand their internal mechanics. How can we visualize the internal modeling of multimodal interactions in these models? Our paper aims to fill this gap by proposing MultiViz, a method for analyzing the behavior of multimodal models by scaffolding the problem of interpretability into 4 stages: (1) unimodal importance: how each modality contributes towards downstream modeling and prediction, (2) cross-modal interactions: how different modalities relate with each other, (3) multimodal representations: how unimodal and cross-modal interactions are represented in decision-level features, and (4) multimodal prediction: how decision-level features are composed to make a prediction. MultiViz is designed to operate on diverse modalities, models, tasks, and research areas. Through experiments on 8 trained models across 6 real-world tasks, we show that the complementary stages in MultiViz together enable users to (1) simulate model predictions, (2) assign interpretable concepts to features, (3) perform error analysis on model misclassifications, and (4) use insights from error analysis to debug models. MultiViz is publicly available, will be regularly updated with new interpretation tools and metrics, and welcomes inputs from the community.
Training with Multi-Layer Embeddings for Model Reduction
Ghaemmaghami, Benjamin, Deng, Zihao, Cho, Benjamin, Orshansky, Leo, Singh, Ashish Kumar, Erez, Mattan, Orshansky, Michael
Modern recommendation systems rely on real-valued embeddings of categorical features. Increasing the dimension of embedding vectors improves model accuracy but comes at a high cost to model size. We introduce a multi-layer embedding training (MLET) architecture that trains embeddings via a sequence of linear layers to derive superior embedding accuracy vs. model size trade-off. Our approach is fundamentally based on the ability of factorized linear layers to produce superior embeddings to that of a single linear layer. We focus on the analysis and implementation of a two-layer scheme. Harnessing the recent results in dynamics of backpropagation in linear neural networks, we explain the ability to get superior multi-layer embeddings via their tendency to have lower effective rank. We show that substantial advantages are obtained in the regime where the width of the hidden layer is much larger than that of the final embedding (d). Crucially, at conclusion of training, we convert the two-layer solution into a single-layer one: as a result, the inference-time model size scales as d. We prototype the MLET scheme within Facebook's PyTorch-based open-source Deep Learning Recommendation Model. We show that it allows reducing d by 4-8X, with a corresponding improvement in memory footprint, at given model accuracy. The experiments are run on two publicly available click-through-rate prediction benchmarks (Criteo-Kaggle and Avazu). The runtime cost of MLET is 25%, on average.