Deng, Yiqin
Sense4FL: Vehicular Crowdsensing Enhanced Federated Learning for Autonomous Driving
Ma, Yanan, Hu, Senkang, Fang, Zhengru, Ji, Yun, Deng, Yiqin, Fang, Yuguang
To accommodate constantly changing road conditions, real-time model training is essential for autonomous driving (AD). Federated learning (FL) serves as a promising paradigm to enable autonomous vehicles to train models collaboratively with their onboard computing resources. However, existing vehicle selection schemes for FL all assume predetermined and location-independent vehicles' datasets, neglecting the fact that vehicles collect training data along their routes, thereby resulting in suboptimal vehicle selection. To improve the perception quality in AD for a region, we propose Sense4FL, a vehicular crowdsensing-enhanced FL framework featuring trajectory-dependent vehicular training data collection. To this end, we first derive the convergence bound of FL by considering the impact of both vehicles' uncertain trajectories and uploading probabilities, from which we discover that minimizing the training loss is equivalent to minimizing a weighted sum of local and global earth mover's distance (EMD) between vehicles' collected data distribution and global data distribution. Based on this observation, we formulate the trajectory-dependent vehicle selection and data collection problem for FL in AD. Given that the problem is NP-hard, we develop an efficient algorithm to find the solution with an approximation guarantee. Extensive simulation results have demonstrated the effectiveness of our approach in improving object detection performance compared with existing benchmarks.
CP-Guard+: A New Paradigm for Malicious Agent Detection and Defense in Collaborative Perception
Hu, Senkang, Tao, Yihang, Fang, Zihan, Xu, Guowen, Deng, Yiqin, Kwong, Sam, Fang, Yuguang
Collaborative perception (CP) is a promising method for safe connected and autonomous driving, which enables multiple vehicles to share sensing information to enhance perception performance. However, compared with single-vehicle perception, the openness of a CP system makes it more vulnerable to malicious attacks that can inject malicious information to mislead the perception of an ego vehicle, resulting in severe risks for safe driving. To mitigate such vulnerability, we first propose a new paradigm for malicious agent detection that effectively identifies malicious agents at the feature level without requiring verification of final perception results, significantly reducing computational overhead. Building on this paradigm, we introduce CP-GuardBench, the first comprehensive dataset provided to train and evaluate various malicious agent detection methods for CP systems. Furthermore, we develop a robust defense method called CP-Guard+, which enhances the margin between the representations of benign and malicious features through a carefully designed Dual-Centered Contrastive Loss (DCCLoss). Finally, we conduct extensive experiments on both CP-GuardBench and V2X-Sim, and demonstrate the superiority of CP-Guard+.
CP-Guard: Malicious Agent Detection and Defense in Collaborative Bird's Eye View Perception
Hu, Senkang, Tao, Yihang, Xu, Guowen, Deng, Yiqin, Chen, Xianhao, Fang, Yuguang, Kwong, Sam
Collaborative Perception (CP) has shown a promising technique for autonomous driving, where multiple connected and autonomous vehicles (CAVs) share their perception information to enhance the overall perception performance and expand the perception range. However, in CP, ego CAV needs to receive messages from its collaborators, which makes it easy to be attacked by malicious agents. For example, a malicious agent can send harmful information to the ego CAV to mislead it. To address this critical issue, we propose a novel method, \textbf{CP-Guard}, a tailored defense mechanism for CP that can be deployed by each agent to accurately detect and eliminate malicious agents in its collaboration network. Our key idea is to enable CP to reach a consensus rather than a conflict against the ego CAV's perception results. Based on this idea, we first develop a probability-agnostic sample consensus (PASAC) method to effectively sample a subset of the collaborators and verify the consensus without prior probabilities of malicious agents. Furthermore, we define a collaborative consistency loss (CCLoss) to capture the discrepancy between the ego CAV and its collaborators, which is used as a verification criterion for consensus. Finally, we conduct extensive experiments in collaborative bird's eye view (BEV) tasks and our results demonstrate the effectiveness of our CP-Guard.
IC3M: In-Car Multimodal Multi-object Monitoring for Abnormal Status of Both Driver and Passengers
Fang, Zihan, Lin, Zheng, Hu, Senkang, Cao, Hangcheng, Deng, Yiqin, Chen, Xianhao, Fang, Yuguang
Recently, in-car monitoring has emerged as a promising technology for detecting early-stage abnormal status of the driver and providing timely alerts to prevent traffic accidents. Although training models with multimodal data enhances the reliability of abnormal status detection, the scarcity of labeled data and the imbalance of class distribution impede the extraction of critical abnormal state features, significantly deteriorating training performance. Furthermore, missing modalities due to environment and hardware limitations further exacerbate the challenge of abnormal status identification. More importantly, monitoring abnormal health conditions of passengers, particularly in elderly care, is of paramount importance but remains underexplored. To address these challenges, we introduce our IC3M, an efficient camera-rotation-based multimodal framework for monitoring both driver and passengers in a car. Our IC3M comprises two key modules: an adaptive threshold pseudo-labeling strategy and a missing modality reconstruction. The former customizes pseudo-labeling thresholds for different classes based on the class distribution, generating class-balanced pseudo labels to guide model training effectively, while the latter leverages crossmodality relationships learned from limited labels to accurately recover missing modalities by distribution transferring from available modalities. Extensive experimental results demonstrate that IC3M outperforms state-of-the-art benchmarks in accuracy, precision, and recall while exhibiting superior robustness under limited labeled data and severe missing modality.
AgentsCoDriver: Large Language Model Empowered Collaborative Driving with Lifelong Learning
Hu, Senkang, Fang, Zhengru, Fang, Zihan, Deng, Yiqin, Chen, Xianhao, Fang, Yuguang
Connected and autonomous driving is developing rapidly in recent years. However, current autonomous driving systems, which are primarily based on data-driven approaches, exhibit deficiencies in interpretability, generalization, and continuing learning capabilities. In addition, the single-vehicle autonomous driving systems lack of the ability of collaboration and negotiation with other vehicles, which is crucial for the safety and efficiency of autonomous driving systems. In order to address these issues, we leverage large language models (LLMs) to develop a novel framework, AgentsCoDriver, to enable multiple vehicles to conduct collaborative driving. AgentsCoDriver consists of five modules: observation module, reasoning engine, cognitive memory module, reinforcement reflection module, and communication module. It can accumulate knowledge, lessons, and experiences over time by continuously interacting with the environment, thereby making itself capable of lifelong learning. In addition, by leveraging the communication module, different agents can exchange information and realize negotiation and collaboration in complex traffic environments. Extensive experiments are conducted and show the superiority of AgentsCoDriver.
ESFL: Efficient Split Federated Learning over Resource-Constrained Heterogeneous Wireless Devices
Zhu, Guangyu, Deng, Yiqin, Chen, Xianhao, Zhang, Haixia, Fang, Yuguang, Wong, Tan F.
Federated learning (FL) allows multiple parties (distributed devices) to train a machine learning model without sharing raw data. How to effectively and efficiently utilize the resources on devices and the central server is a highly interesting yet challenging problem. In this paper, we propose an efficient split federated learning algorithm (ESFL) to take full advantage of the powerful computing capabilities at a central server under a split federated learning framework with heterogeneous end devices (EDs). By splitting the model into different submodels between the server and EDs, our approach jointly optimizes user-side workload and server-side computing resource allocation by considering users' heterogeneity. We formulate the whole optimization problem as a mixed-integer non-linear program, which is an NP-hard problem, and develop an iterative approach to obtain an approximate solution efficiently. Extensive simulations have been conducted to validate the significantly increased efficiency of our ESFL approach compared with standard federated learning, split learning, and splitfed learning.
Efficient Parallel Split Learning over Resource-constrained Wireless Edge Networks
Lin, Zheng, Zhu, Guangyu, Deng, Yiqin, Chen, Xianhao, Gao, Yue, Huang, Kaibin, Fang, Yuguang
The increasingly deeper neural networks hinder the democratization of privacy-enhancing distributed learning, such as federated learning (FL), to resource-constrained devices. To overcome this challenge, in this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL), allowing multiple client devices to offload substantial training workloads to an edge server via layer-wise model split. By observing that existing PSL schemes incur excessive training latency and large volume of data transmissions, we propose an innovative PSL framework, namely, efficient parallel split learning (EPSL), to accelerate model training. To be specific, EPSL parallelizes client-side model training and reduces the dimension of local gradients for back propagation (BP) via last-layer gradient aggregation, leading to a significant reduction in server-side training and communication latency. Moreover, by considering the heterogeneous channel conditions and computing capabilities at client devices, we jointly optimize subchannel allocation, power control, and cut layer selection to minimize the per-round latency. Simulation results show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy compared with the state-of-the-art benchmarks, and the tailored resource management and layer split strategy can considerably reduce latency than the counterpart without optimization.