Goto

Collaborating Authors

 Dean, Sarah


Online Convex Optimization with Unbounded Memory

arXiv.org Machine Learning

Online convex optimization (OCO) is a widely used framework in online learning. In each round, the learner chooses a decision in a convex set and an adversary chooses a convex loss function, and then the learner suffers the loss associated with their current decision. However, in many applications the learner's loss depends not only on the current decision but on the entire history of decisions until that point. The OCO framework and its existing generalizations do not capture this, and they can only be applied to many settings of interest after a long series of approximation arguments. They also leave open the question of whether the dependence on memory is tight because there are no non-trivial lower bounds. In this work we introduce a generalization of the OCO framework, ``Online Convex Optimization with Unbounded Memory'', that captures long-term dependence on past decisions. We introduce the notion of $p$-effective memory capacity, $H_p$, that quantifies the maximum influence of past decisions on present losses. We prove an $O(\sqrt{H_p T})$ upper bound on the policy regret and a matching (worst-case) lower bound. As a special case, we prove the first non-trivial lower bound for OCO with finite memory~\citep{anavaHM2015online}, which could be of independent interest, and also improve existing upper bounds. We demonstrate the broad applicability of our framework by using it to derive regret bounds, and to improve and simplify existing regret bound derivations, for a variety of online learning problems including online linear control and an online variant of performative prediction.


Emergent segmentation from participation dynamics and multi-learner retraining

arXiv.org Artificial Intelligence

The choice to participate in a data-driven service, often made on the basis of quality of that service, influences the ability of the service to learn and improve. We study the participation and retraining dynamics that arise when both the learners and sub-populations of users are \emph{risk-reducing}, which cover a broad class of updates including gradient descent, multiplicative weights, etc. Suppose, for example, that individuals choose to spend their time amongst social media platforms proportionally to how well each platform works for them. Each platform also gathers data about its active users, which it uses to update parameters with a gradient step. For this example and for our general class of dynamics, we show that the only asymptotically stable equilibria are segmented, with sub-populations allocated to a single learner. Under mild assumptions, the utilitarian social optimum is a stable equilibrium. In contrast to previous work, which shows that repeated risk minimization can result in representation disparity and high overall loss for a single learner \citep{hashimoto2018fairness,miller2021outside}, we find that repeated myopic updates with multiple learners lead to better outcomes. We illustrate the phenomena via a simulated example initialized from real data.


Modeling Content Creator Incentives on Algorithm-Curated Platforms

arXiv.org Artificial Intelligence

Content creators compete for user attention. Their reach crucially depends on algorithmic choices made by developers on online platforms. To maximize exposure, many creators adapt strategically, as evidenced by examples like the sprawling search engine optimization industry. This begets competition for the finite user attention pool. We formalize these dynamics in what we call an exposure game, a model of incentives induced by algorithms, including modern factorization and (deep) two-tower architectures. We prove that seemingly innocuous algorithmic choices, e.g., non-negative vs. unconstrained factorization, significantly affect the existence and character of (Nash) equilibria in exposure games. We proffer use of creator behavior models, like exposure games, for an (ex-ante) pre-deployment audit. Such an audit can identify misalignment between desirable and incentivized content, and thus complement post-hoc measures like content filtering and moderation. To this end, we propose tools for numerically finding equilibria in exposure games, and illustrate results of an audit on the MovieLens and LastFM datasets. Among else, we find that the strategically produced content exhibits strong dependence between algorithmic exploration and content diversity, and between model expressivity and bias towards gender-based user and creator groups.


Decision-aid or Controller? Steering Human Decision Makers with Algorithms

arXiv.org Artificial Intelligence

Algorithms are used to aid human decision makers by making predictions and recommending decisions. Currently, these algorithms are trained to optimize prediction accuracy. What if they were optimized to control final decisions? In this paper, we study a decision-aid algorithm that learns about the human decision maker and provides ''personalized recommendations'' to influence final decisions. We first consider fixed human decision functions which map observable features and the algorithm's recommendations to final decisions. We characterize the conditions under which perfect control over final decisions is attainable. Under fairly general assumptions, the parameters of the human decision function can be identified from past interactions between the algorithm and the human decision maker, even when the algorithm was constrained to make truthful recommendations. We then consider a decision maker who is aware of the algorithm's manipulation and responds strategically. By posing the setting as a variation of the cheap talk game [Crawford and Sobel, 1982], we show that all equilibria are partition equilibria where only coarse information is shared: the algorithm recommends an interval containing the ideal decision. We discuss the potential applications of such algorithms and their social implications.


Reward Reports for Reinforcement Learning

arXiv.org Artificial Intelligence

Building systems that are good for society in the face of complex societal effects requires a dynamic approach. Recent approaches to machine learning (ML) documentation have demonstrated the promise of discursive frameworks for deliberation about these complexities. However, these developments have been grounded in a static ML paradigm, leaving the role of feedback and post-deployment performance unexamined. Meanwhile, recent work in reinforcement learning has shown that the effects of feedback and optimization objectives on system behavior can be wide-ranging and unpredictable. In this paper we sketch a framework for documenting deployed and iteratively updated learning systems, which we call Reward Reports. Taking inspiration from various contributions to the technical literature on reinforcement learning, we outline Reward Reports as living documents that track updates to design choices and assumptions behind what a particular automated system is optimizing for. They are intended to track dynamic phenomena arising from system deployment, rather than merely static properties of models or data. After presenting the elements of a Reward Report, we discuss a concrete example: Meta's BlenderBot 3 chatbot. Several others for game-playing (DeepMind's MuZero), content recommendation (MovieLens), and traffic control (Project Flow) are included in the appendix.


Cross-Dataset Propensity Estimation for Debiasing Recommender Systems

arXiv.org Artificial Intelligence

Datasets for training recommender systems are often subject to distribution shift induced by users' and recommenders' selection biases. In this paper, we study the impact of selection bias on datasets with different quantization. We then leverage two differently quantized datasets from different source distributions to mitigate distribution shift by applying the inverse probability scoring method from causal inference.


Quantifying Availability and Discovery in Recommender Systems via Stochastic Reachability

arXiv.org Machine Learning

In this work, we consider how preference models in interactive recommendation systems determine the availability of content and users' opportunities for discovery. We propose an evaluation procedure based on stochastic reachability to quantify the maximum probability of recommending a target piece of content to an user for a set of allowable strategic modifications. This framework allows us to compute an upper bound on the likelihood of recommendation with minimal assumptions about user behavior. Stochastic reachability can be used to detect biases in the availability of content and diagnose limitations in the opportunities for discovery granted to users. We show that this metric can be computed efficiently as a convex program for a variety of practical settings, and further argue that reachability is not inherently at odds with accuracy. We demonstrate evaluations of recommendation algorithms trained on large datasets of explicit and implicit ratings. Our results illustrate how preference models, selection rules, and user interventions impact reachability and how these effects can be distributed unevenly.


Axes for Sociotechnical Inquiry in AI Research

arXiv.org Artificial Intelligence

The development of artificial intelligence (AI) technologies has far exceeded the investigation of their relationship with society. Sociotechnical inquiry is needed to mitigate the harms of new technologies whose potential impacts remain poorly understood. To date, subfields of AI research develop primarily individual views on their relationship with sociotechnics, while tools for external investigation, comparison, and cross-pollination are lacking. In this paper, we propose four directions for inquiry into new and evolving areas of technological development: value--what progress and direction does a field promote, optimization--how the defined system within a problem formulation relates to broader dynamics, consensus--how agreement is achieved and who is included in building it, and failure--what methods are pursued when the problem specification is found wanting. The paper provides a lexicon for sociotechnical inquiry and illustrates it through the example of consumer drone technology.


AI Development for the Public Interest: From Abstraction Traps to Sociotechnical Risks

arXiv.org Artificial Intelligence

Despite interest in communicating ethical problems and social contexts within the undergraduate curriculum to advance Public Interest Technology (PIT) goals, interventions at the graduate level remain largely unexplored. This may be due to the conflicting ways through which distinct Artificial Intelligence (AI) research tracks conceive of their interface with social contexts. In this paper we track the historical emergence of sociotechnical inquiry in three distinct subfields of AI research: AI Safety, Fair Machine Learning (Fair ML) and Human-in-the-Loop (HIL) Autonomy. We show that for each subfield, perceptions of PIT stem from the particular dangers faced by past integration of technical systems within a normative social order. We further interrogate how these histories dictate the response of each subfield to conceptual traps, as defined in the Science and Technology Studies literature. Finally, through a comparative analysis of these currently siloed fields, we present a roadmap for a unified approach to sociotechnical graduate pedagogy in AI.


Guaranteeing Safety of Learned Perception Modules via Measurement-Robust Control Barrier Functions

arXiv.org Machine Learning

Modern nonlinear control theory seeks to develop feedback controllers that endow systems with properties such as safety and stability. The guarantees ensured by these controllers often rely on accurate estimates of the system state for determining control actions. In practice, measurement model uncertainty can lead to error in state estimates that degrades these guarantees. In this paper, we seek to unify techniques from control theory and machine learning to synthesize controllers that achieve safety in the presence of measurement model uncertainty. We define the notion of a Measurement-Robust Control Barrier Function (MR-CBF) as a tool for determining safe control inputs when facing measurement model uncertainty. Furthermore, MR-CBFs are used to inform sampling methodologies for learning-based perception systems and quantify tolerable error in the resulting learned models. We demonstrate the efficacy of MR-CBFs in achieving safety with measurement model uncertainty on a simulated Segway system.