Goto

Collaborating Authors

 Dean, Sarah


Policy Design for Two-sided Platforms with Participation Dynamics

arXiv.org Artificial Intelligence

In two-sided platforms (e.g., video streaming or e-commerce), viewers and providers engage in interactive dynamics, where an increased provider population results in higher viewer utility and the increase of viewer population results in higher provider utility. Despite the importance of such "population effects" on long-term platform health, recommendation policies do not generally take the participation dynamics into account. This paper thus studies the dynamics and policy design on two-sided platforms under the population effects for the first time. Our control- and game-theoretic findings warn against the use of myopic-greedy policy and shed light on the importance of provider-side considerations (i.e., effectively distributing exposure among provider groups) to improve social welfare via population growth. We also present a simple algorithm to optimize long-term objectives by considering the population effects, and demonstrate its effectiveness in synthetic and real-data experiments.


Finite Sample Identification of Partially Observed Bilinear Dynamical Systems

arXiv.org Machine Learning

We consider the problem of learning a realization of a partially observed bilinear dynamical system (BLDS) from noisy input-output data. Given a single trajectory of input-output samples, we provide a finite time analysis for learning the system's Markov-like parameters, from which a balanced realization of the bilinear system can be obtained. Our bilinear system identification algorithm learns the system's Markov-like parameters by regressing the outputs to highly correlated, nonlinear, and heavy-tailed covariates. Moreover, the stability of BLDS depends on the sequence of inputs used to excite the system. These properties, unique to partially observed bilinear dynamical systems, pose significant challenges to the analysis of our algorithm for learning the unknown dynamics. We address these challenges and provide high probability error bounds on our identification algorithm under a uniform stability assumption. Our analysis provides insights into system theoretic quantities that affect learning accuracy and sample complexity. Lastly, we perform numerical experiments with synthetic data to reinforce these insights.


Learning Linear Dynamics from Bilinear Observations

arXiv.org Machine Learning

We consider the problem of learning a realization of a partially observed dynamical system with linear state transitions and bilinear observations. Under very mild assumptions on the process and measurement noises, we provide a finite time analysis for learning the unknown dynamics matrices (up to a similarity transform). Our analysis involves a regression problem with heavy-tailed and dependent data. Moreover, each row of our design matrix contains a Kronecker product of current input with a history of inputs, making it difficult to guarantee persistence of excitation. We overcome these challenges, first providing a data-dependent high probability error bound for arbitrary but fixed inputs. Then, we derive a data-independent error bound for inputs chosen according to a simple random design. Our main results provide an upper bound on the statistical error rates and sample complexity of learning the unknown dynamics matrices from a single finite trajectory of bilinear observations.


Harm Mitigation in Recommender Systems under User Preference Dynamics

arXiv.org Artificial Intelligence

We consider a recommender system that takes into account the interplay between recommendations, the evolution of user interests, and harmful content. We model the impact of recommendations on user behavior, particularly the tendency to consume harmful content. We seek recommendation policies that establish a tradeoff between maximizing click-through rate (CTR) and mitigating harm. We establish conditions under which the user profile dynamics have a stationary point, and propose algorithms for finding an optimal recommendation policy at stationarity. We experiment on a semi-synthetic movie recommendation setting initialized with real data and observe that our policies outperform baselines at simultaneously maximizing CTR and mitigating harm.


Random Features Approximation for Control-Affine Systems

arXiv.org Machine Learning

Modern data-driven control applications call for flexible nonlinear models that are amenable to principled controller synthesis and realtime feedback. Many nonlinear dynamical systems of interest are control affine. We propose two novel classes of nonlinear feature representations which capture control affine structure while allowing for arbitrary complexity in the state dependence. Our methods make use of random features (RF) approximations, inheriting the expressiveness of kernel methods at a lower computational cost. We formalize the representational capabilities of our methods by showing their relationship to the Affine Dot Product (ADP) kernel proposed by Casta\~neda et al. (2021) and a novel Affine Dense (AD) kernel that we introduce. We further illustrate the utility by presenting a case study of data-driven optimization-based control using control certificate functions (CCF). Simulation experiments on a double pendulum empirically demonstrate the advantages of our methods.


Learning from Streaming Data when Users Choose

arXiv.org Artificial Intelligence

Moreover, due to the data-driven nature of digital platforms, interesting dynamics emerge among users and service In digital markets comprised of many competing providers: on the one hand, users choose amongst services, each user chooses between multiple providers based on the quality of their services; on the other service providers according to their preferences, hand, providers use the user data to improve and update and the chosen service makes use of the user data their services, affecting future user choices (Ginart et al., to incrementally improve its model. The service 2021; Kwon et al., 2022; Dean et al., 2024; Jagadeesan et al., providers' models influence which service the 2023a). For example, in personalized music streaming platform, user will choose at the next time step, and the a user chooses amongst different music streaming user's choice, in return, influences the model update, platforms based on how well they meet the user's needs.


To Ask or Not To Ask: Human-in-the-loop Contextual Bandits with Applications in Robot-Assisted Feeding

arXiv.org Artificial Intelligence

Robot-assisted bite acquisition involves picking up food items that vary in their shape, compliance, size, and texture. A fully autonomous strategy for bite acquisition is unlikely to efficiently generalize to this wide variety of food items. We propose to leverage the presence of the care recipient to provide feedback when the system encounters novel food items. However, repeatedly asking for help imposes cognitive workload on the user. In this work, we formulate human-in-the-loop bite acquisition within a contextual bandit framework and propose a novel method, LinUCB-QG, that selectively asks for help. This method leverages a predictive model of cognitive workload in response to different types and timings of queries, learned using data from 89 participants collected in an online user study. We demonstrate that this method enhances the balance between task performance and cognitive workload compared to autonomous and querying baselines, through experiments in a food dataset-based simulator and a user study with 18 participants without mobility limitations.


Accounting for AI and Users Shaping One Another: The Role of Mathematical Models

arXiv.org Artificial Intelligence

As AI systems enter into a growing number of societal domains, these systems increasingly shape and are shaped by user preferences, opinions, and behaviors. However, the design of AI systems rarely accounts for how AI and users shape one another. In this position paper, we argue for the development of formal interaction models which mathematically specify how AI and users shape one another. Formal interaction models can be leveraged to (1) specify interactions for implementation, (2) monitor interactions through empirical analysis, (3) anticipate societal impacts via counterfactual analysis, and (4) control societal impacts via interventions. The design space of formal interaction models is vast, and model design requires careful consideration of factors such as style, granularity, mathematical complexity, and measurability. Using content recommender systems as a case study, we critically examine the nascent literature of formal interaction models with respect to these use-cases and design axes. More broadly, we call for the community to leverage formal interaction models when designing, evaluating, or auditing any AI system which interacts with users.


Strategic Usage in a Multi-Learner Setting

arXiv.org Artificial Intelligence

Real-world systems often involve some pool of users choosing between a set of services. With the increase in popularity of online learning algorithms, these services can now self-optimize, leveraging data collected on users to maximize some reward such as service quality. On the flipside, users may strategically choose which services to use in order to pursue their own reward functions, in the process wielding power over which services can see and use their data. Extensive prior research has been conducted on the effects of strategic users in single-service settings, with strategic behavior manifesting in the manipulation of observable features to achieve a desired classification; however, this can often be costly or unattainable for users and fails to capture the full behavior of multi-service dynamic systems. As such, we analyze a setting in which strategic users choose among several available services in order to pursue positive classifications, while services seek to minimize loss functions on their observations. We focus our analysis on realizable settings, and show that naive retraining can still lead to oscillation even if all users are observed at different times; however, if this retraining uses memory of past observations, convergent behavior can be guaranteed for certain loss function classes. We provide results obtained from synthetic and real-world data to empirically validate our theoretical findings.


Initializing Services in Interactive ML Systems for Diverse Users

arXiv.org Artificial Intelligence

This paper studies ML systems that interactively learn from users across multiple subpopulations with heterogeneous data distributions. The primary objective is to provide specialized services for different user groups while also predicting user preferences. Once the users select a service based on how well the service anticipated their preference, the services subsequently adapt and refine themselves based on the user data they accumulate, resulting in an iterative, alternating minimization process between users and services (learning dynamics). Employing such tailored approaches has two main challenges: (i) Unknown user preferences: Typically, data on user preferences are unavailable without interaction, and uniform data collection across a large and diverse user base can be prohibitively expensive. (ii) Suboptimal Local Solutions: The total loss (sum of loss functions across all users and all services) landscape is not convex even if the individual losses on a single service are convex, making it likely for the learning dynamics to get stuck in local minima. The final outcome of the aforementioned learning dynamics is thus strongly influenced by the initial set of services offered to users, and is not guaranteed to be close to the globally optimal outcome. In this work, we propose a randomized algorithm to adaptively select very few users to collect preference data from, while simultaneously initializing a set of services. We prove that under mild assumptions on the loss functions, the expected total loss achieved by the algorithm right after initialization is within a factor of the globally optimal total loss with complete user preference data, and this factor scales only logarithmically in the number of services. Our theory is complemented by experiments on real as well as semi-synthetic datasets.