Goto

Collaborating Authors

 De-Arteaga, Maria


More of the Same: Persistent Representational Harms Under Increased Representation

arXiv.org Artificial Intelligence

To recognize and mitigate the harms of generative AI systems, it is crucial to consider who is represented in the outputs of generative AI systems and how people are represented. A critical gap emerges when naively improving who is represented, as this does not imply bias mitigation efforts have been applied to address how people are represented. We critically examined this by investigating gender representation in occupation across state-of-the-art large language models. We first show evidence suggesting that over time there have been interventions to models altering the resulting gender distribution, and we find that women are more represented than men when models are prompted to generate biographies or personas. We then demonstrate that representational biases persist in how different genders are represented by examining statistically significant word differences across genders. This results in a proliferation of representational harms, stereotypes, and neoliberalism ideals that, despite existing interventions to increase female representation, reinforce existing systems of oppression.


Using Machine Bias To Measure Human Bias

arXiv.org Artificial Intelligence

Biased human decisions have consequential impacts across various domains, yielding unfair treatment of individuals and resulting in suboptimal outcomes for organizations and society. In recognition of this fact, organizations regularly design and deploy interventions aimed at mitigating these biases. However, measuring human decision biases remains an important but elusive task. Organizations are frequently concerned with mistaken decisions disproportionately affecting one group. In practice, however, this is typically not possible to assess due to the scarcity of a gold standard: a label that indicates what the correct decision would have been. In this work, we propose a machine learning-based framework to assess bias in human-generated decisions when gold standard labels are scarce. We provide theoretical guarantees and empirical evidence demonstrating the superiority of our method over existing alternatives. This proposed methodology establishes a foundation for transparency in human decision-making, carrying substantial implications for managerial duties, and offering potential for alleviating algorithmic biases when human decisions are used as labels to train algorithms.


A Critical Survey on Fairness Benefits of XAI

arXiv.org Artificial Intelligence

In this critical survey, we analyze typical claims on the relationship between explainable AI (XAI) and fairness to disentangle the multidimensional relationship between these two concepts. Based on a systematic literature review and a subsequent qualitative content analysis, we identify seven archetypal claims from 175 papers on the alleged fairness benefits of XAI. We present crucial caveats with respect to these claims and provide an entry point for future discussions around the potentials and limitations of XAI for specific fairness desiderata. Importantly, we notice that claims are often (i) vague and simplistic, (ii) lacking normative grounding, or (iii) poorly aligned with the actual capabilities of XAI. We encourage to conceive XAI not as an ethical panacea but as one of many tools to approach the multidimensional, sociotechnical challenge of algorithmic fairness. Moreover, when making a claim about XAI and fairness, we emphasize the need to be more specific about what kind of XAI method is used and which fairness desideratum it refers to, how exactly it enables fairness, and who is the stakeholder that benefits from XAI.


Diverse, but Divisive: LLMs Can Exaggerate Gender Differences in Opinion Related to Harms of Misinformation

arXiv.org Artificial Intelligence

The pervasive spread of misinformation and disinformation poses a significant threat to society. Professional fact-checkers play a key role in addressing this threat, but the vast scale of the problem forces them to prioritize their limited resources. This prioritization may consider a range of factors, such as varying risks of harm posed to specific groups of people. In this work, we investigate potential implications of using a large language model (LLM) to facilitate such prioritization. Because fact-checking impacts a wide range of diverse segments of society, it is important that diverse views are represented in the claim prioritization process. This paper examines whether a LLM can reflect the views of various groups when assessing the harms of misinformation, focusing on gender as a primary variable. We pose two central questions: (1) To what extent do prompts with explicit gender references reflect gender differences in opinion in the United States on topics of social relevance? and (2) To what extent do gender-neutral prompts align with gendered viewpoints on those topics? To analyze these questions, we present the TopicMisinfo dataset, containing 160 fact-checked claims from diverse topics, supplemented by nearly 1600 human annotations with subjective perceptions and annotator demographics. Analyzing responses to gender-specific and neutral prompts, we find that GPT 3.5-Turbo reflects empirically observed gender differences in opinion but amplifies the extent of these differences. These findings illuminate AI's complex role in moderating online communication, with implications for fact-checkers, algorithm designers, and the use of crowd-workers as annotators. We also release the TopicMisinfo dataset to support continuing research in the community.


Mitigating Label Bias via Decoupled Confident Learning

arXiv.org Artificial Intelligence

Growing concerns regarding algorithmic fairness have led to a surge in methodologies to mitigate algorithmic bias. However, such methodologies largely assume that observed labels in training data are correct. This is problematic because bias in labels is pervasive across important domains, including healthcare, hiring, and content moderation. In particular, human-generated labels are prone to encoding societal biases. While the presence of labeling bias has been discussed conceptually, there is a lack of methodologies to address this problem. We propose a pruning method -- Decoupled Confident Learning (DeCoLe) -- specifically designed to mitigate label bias. After illustrating its performance on a synthetic dataset, we apply DeCoLe in the context of hate speech detection, where label bias has been recognized as an important challenge, and show that it successfully identifies biased labels and outperforms competing approaches.


Imputation Strategies Under Clinical Presence: Impact on Algorithmic Fairness

arXiv.org Artificial Intelligence

Machine learning risks reinforcing biases present in data, and, as we argue in this work, in what is absent from data. In healthcare, biases have marked medical history, leading to unequal care affecting marginalised groups. Patterns in missing data often reflect these group discrepancies, but the algorithmic fairness implications of group-specific missingness are not well understood. Despite its potential impact, imputation is often an overlooked preprocessing step, with attention placed on the reduction of reconstruction error and overall performance, ignoring how imputation can affect groups differently. Our work studies how imputation choices affect reconstruction errors across groups and algorithmic fairness properties of downstream predictions.


Same Same, But Different: Conditional Multi-Task Learning for Demographic-Specific Toxicity Detection

arXiv.org Artificial Intelligence

In developing natural language processing (NLP) models to detect toxic language (Arango et al., 2019; Schmidt and Wiegand, 2017; Vaidya et al., 2020), we typically assume that toxic language manifests in similar forms across different targeted groups. For example, HateCheck (Rรถttger et al., 2021) enumerates templatic patterns such as "I hate [GROUP]" that we expect detection models to handle robustly across groups. Moreover, we typically pool data across different demographic targets in model training in order to learn general patterns of linguistic toxicity across diverse demographic targets. However, the nature and form of toxic language used to target different demographic groups can vary quite markedly. Furthermore, an imbalanced distribution of different demographic groups in toxic language datasets risks over-fitting forms of toxic language most relevant to the majority group(s), potentially at the expense of systematically weaker model performance on minority group(s). For this reason, a "one-size-fits-all" modeling approach may yield sub-optimal performance and more specifically raise concerns of algorithmic fairness (Arango et al., 2019; Park et al., 2018; Sap et al., 2019). At the same time, radically siloing off datasets for each different demographic target group would prevent models from learning broader linguistic patterns of toxicity across different demographic groups targeted.


Human-Centered Responsible Artificial Intelligence: Current & Future Trends

arXiv.org Artificial Intelligence

In recent years, the CHI community has seen significant growth in research on Human-Centered Responsible Artificial Intelligence. While different research communities may use different terminology to discuss similar topics, all of this work is ultimately aimed at developing AI that benefits humanity while being grounded in human rights and ethics, and reducing the potential harms of AI. In this special interest group, we aim to bring together researchers from academia and industry interested in these topics to map current and future research trends to advance this important area of research by fostering collaboration and sharing ideas.


On Explanations, Fairness, and Appropriate Reliance in Human-AI Decision-Making

arXiv.org Artificial Intelligence

Proponents of explainable AI have often argued that it constitutes an essential path towards algorithmic fairness. Prior works examining these claims have primarily evaluated explanations based on their effects on humans' perceptions, but there is scant research on the relationship between explanations and distributive fairness of AI-assisted decisions. In this paper, we conduct an empirical study to examine the relationship between feature-based explanations and distributive fairness, mediated by human perceptions and reliance on AI recommendations. Our findings show that explanations influence fairness perceptions, which, in turn, relate to humans' tendency to adhere to AI recommendations. However, our findings suggest that such explanations do not enable humans to discern correct and wrong AI recommendations. Instead, we show that they may affect reliance irrespective of the correctness of AI recommendations. Depending on which features an explanation highlights, this can foster or hinder distributive fairness: when explanations highlight features that are task-irrelevant and evidently associated with the sensitive attribute, this prompts overrides that counter stereotype-aligned AI recommendations. Meanwhile, if explanations appear task-relevant, this induces reliance behavior that reinforces stereotype-aligned errors. These results show that feature-based explanations are not a reliable mechanism to improve distributive fairness, as their ability to do so relies on a human-in-the-loop operationalization of the flawed notion of "fairness through unawareness". Finally, our study design provides a blueprint to evaluate the suitability of other explanations as pathways towards improved distributive fairness of AI-assisted decisions.


Learning Complementary Policies for Human-AI Teams

arXiv.org Artificial Intelligence

Human-AI complementarity is important when neither the algorithm nor the human yields dominant performance across all instances in a given context. Recent work that explored human-AI collaboration has considered decisions that correspond to classification tasks. However, in many important contexts where humans can benefit from AI complementarity, humans undertake course of action. In this paper, we propose a framework for a novel human-AI collaboration for selecting advantageous course of action, which we refer to as Learning Complementary Policy for Human-AI teams (\textsc{lcp-hai}). Our solution aims to exploit the human-AI complementarity to maximize decision rewards by learning both an algorithmic policy that aims to complement humans by a routing model that defers decisions to either a human or the AI to leverage the resulting complementarity. We then extend our approach to leverage opportunities and mitigate risks that arise in important contexts in practice: 1) when a team is composed of multiple humans with differential and potentially complementary abilities, 2) when the observational data includes consistent deterministic actions, and 3) when the covariate distribution of future decisions differ from that in the historical data. We demonstrate the effectiveness of our proposed methods using data on real human responses and semi-synthetic, and find that our methods offer reliable and advantageous performance across setting, and that it is superior to when either the algorithm or the AI make decisions on their own. We also find that the extensions we propose effectively improve the robustness of the human-AI collaboration performance in the presence of different challenging settings.