Goto

Collaborating Authors

 Cui, Chenhang


Safe + Safe = Unsafe? Exploring How Safe Images Can Be Exploited to Jailbreak Large Vision-Language Models

arXiv.org Artificial Intelligence

Recent advances in Large Vision-Language Models (LVLMs) have showcased strong reasoning abilities across multiple modalities, achieving significant breakthroughs in various real-world applications. Despite this great success, the safety guardrail of LVLMs may not cover the unforeseen domains introduced by the visual modality. Existing studies primarily focus on eliciting LVLMs to generate harmful responses via carefully crafted image-based jailbreaks designed to bypass alignment defenses. In this study, we reveal that a safe image can be exploited to achieve the same jailbreak consequence when combined with additional safe images and prompts. This stems from two fundamental properties of LVLMs: universal reasoning capabilities and safety snowball effect. Building on these insights, we propose Safety Snowball Agent (SSA), a novel agent-based framework leveraging agents' autonomous and tool-using abilities to jailbreak LVLMs. SSA operates through two principal stages: (1) initial response generation, where tools generate or retrieve jailbreak images based on potential harmful intents, and (2) harmful snowballing, where refined subsequent prompts induce progressively harmful outputs. Our experiments demonstrate that \ours can use nearly any image to induce LVLMs to produce unsafe content, achieving high success jailbreaking rates against the latest LVLMs. Unlike prior works that exploit alignment flaws, \ours leverages the inherent properties of LVLMs, presenting a profound challenge for enforcing safety in generative multimodal systems. Our code is avaliable at \url{https://github.com/gzcch/Safety_Snowball_Agent}.


Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment

arXiv.org Artificial Intelligence

The recent advancements in large language models (LLMs) and pre-trained vision models have accelerated the development of vision-language large models (VLLMs), enhancing the interaction between visual and linguistic modalities. Despite their notable success across various domains, VLLMs face challenges in modality alignment, which can lead to issues like hallucinations and unsafe content generation. Current alignment techniques often rely on coarse feedback and external datasets, limiting scalability and performance. In this paper, we propose FiSAO (Fine-Grained Self-Alignment Optimization), a novel self-alignment method that utilizes the model's own visual encoder as a fine-grained verifier to improve visionlanguage alignment without the need for additional data. By leveraging token-level feedback from the vision encoder, FiSAO significantly improves vision-language alignment, even surpassing traditional preference tuning methods that require additional data. Through both theoretical analysis and experimental validation, we demonstrate that FiSAO effectively addresses the misalignment problem in VLLMs, marking the first instance of token-level rewards being applied to such models. The advent of large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023; Yang et al., 2024) and pre-trained vision models (Radford et al., 2021a; Liu et al., 2023c) has propelled visionlanguage large models (VLLMs) by advancing connections between visual and linguistic modalities through linear projection (Li et al., 2023b) or q-former (Dai et al., 2023b). These VLLMs have demonstrated notable capabilities across diverse domains such as medical applications (Liu et al., 2023b), autonomous driving (Zhou et al., 2023a), and embodied intelligence (Peng et al., 2023). However, challenges remain in precisely aligning vision and language modalities for integrated inference due to their independent pre-training (Jang et al., 2023; Liu et al., 2024a). This pre-training process often results in incompatible modality-specific representations, hindering the formation of a coherent aligned representation space during joint training (Jang et al., 2023). Misalignment between modalities can lead to safety risks such as biased or inappropriate content generation (Gong et al., 2023; Tu et al., 2023) and hallucinations, where outputs are not grounded in visual input (Wang et al., 2023). These risks are particularly concerning in tasks like visual question answering (Cui et al., 2023; Fan et al., 2024), OCR (Shi et al., 2023), and image captioning (Gunjal et al., 2024), where precise alignment is critical. To address these misalignment issues, recent works have explored strategies such as instruction tuning (Liu et al., 2023a; Chen et al., 2024b), preference tuning (Yu et al., 2023a), and post-processing methods (Zhou et al., 2023b; Yin et al., 2023).


Dual-Optimized Adaptive Graph Reconstruction for Multi-View Graph Clustering

arXiv.org Artificial Intelligence

Multi-view clustering is an important machine learning task for multi-media data, encompassing various domains such as images, videos, and texts. Moreover, with the growing abundance of graph data, the significance of multi-view graph clustering (MVGC) has become evident. Most existing methods focus on graph neural networks (GNNs) to extract information from both graph structure and feature data to learn distinguishable node representations. However, traditional GNNs are designed with the assumption of homophilous graphs, making them unsuitable for widely prevalent heterophilous graphs. Several techniques have been introduced to enhance GNNs for heterophilous graphs. While these methods partially mitigate the heterophilous graph issue, they often neglect the advantages of traditional GNNs, such as their simplicity, interpretability, and efficiency. In this paper, we propose a novel multi-view graph clustering method based on dual-optimized adaptive graph reconstruction, named DOAGC. It mainly aims to reconstruct the graph structure adapted to traditional GNNs to deal with heterophilous graph issues while maintaining the advantages of traditional GNNs. Specifically, we first develop an adaptive graph reconstruction mechanism that accounts for node correlation and original structural information. To further optimize the reconstruction graph, we design a dual optimization strategy and demonstrate the feasibility of our optimization strategy through mutual information theory. Numerous experiments demonstrate that DOAGC effectively mitigates the heterophilous graph problem.


MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models

arXiv.org Artificial Intelligence

Interleaved multimodal comprehension and generation, enabling models to produce and interpret both images and text in arbitrary sequences, have become a pivotal area in multimodal learning. Despite significant advancements, the evaluation of this capability remains insufficient. Existing benchmarks suffer from limitations in data scale, scope, and evaluation depth, while current evaluation metrics are often costly or biased, lacking in reliability for practical applications. To address these challenges, we introduce MMIE, a large-scale knowledge-intensive benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs). MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts. It supports both interleaved inputs and outputs, offering a mix of multiple-choice and openended question formats to evaluate diverse competencies. Moreover, we propose a reliable automated evaluation metric, leveraging a scoring model fine-tuned with human-annotated data and systematic evaluation criteria, aimed at reducing bias and improving evaluation accuracy. Extensive experiments demonstrate the effectiveness of our benchmark and metrics in providing a comprehensive evaluation of interleaved LVLMs. Specifically, we evaluate eight LVLMs, revealing that even the best models show significant room for improvement, with most achieving only moderate results. We believe MMIE will drive further advancements in the development of interleaved LVLMs. We publicly release our benchmark and code in https://mmie-bench.github.io/. Content warning: this paper contains content that may be inappropriate or offensive. "True evaluation lies in the seamless interweaving of diverse modalities." Multimodal learning has made remarkable progress with the development of Large Vision-Language Models (LVLMs) (Liu et al., 2023a; Zhu et al., 2023; Dai et al., 2023), which are capable of handling diverse tasks that involve both images and text.


MJ-Bench: Is Your Multimodal Reward Model Really a Good Judge for Text-to-Image Generation?

arXiv.org Artificial Intelligence

While text-to-image models like DALLE-3 and Stable Diffusion are rapidly proliferating, they often encounter challenges such as hallucination, bias, and the production of unsafe, low-quality output. To effectively address these issues, it is crucial to align these models with desired behaviors based on feedback from a multimodal judge. Despite their significance, current multimodal judges frequently undergo inadequate evaluation of their capabilities and limitations, potentially leading to misalignment and unsafe fine-tuning outcomes. To address this issue, we introduce MJ-Bench, a novel benchmark which incorporates a comprehensive preference dataset to evaluate multimodal judges in providing feedback for image generation models across four key perspectives: alignment, safety, image quality, and bias. Specifically, we evaluate a large variety of multimodal judges including smaller-sized CLIP-based scoring models, open-source VLMs (e.g. LLaVA family), and close-source VLMs (e.g. GPT-4o, Claude 3) on each decomposed subcategory of our preference dataset. Experiments reveal that close-source VLMs generally provide better feedback, with GPT-4o outperforming other judges in average. Compared with open-source VLMs, smaller-sized scoring models can provide better feedback regarding text-image alignment and image quality, while VLMs provide more accurate feedback regarding safety and generation bias due to their stronger reasoning capabilities. Further studies in feedback scale reveal that VLM judges can generally provide more accurate and stable feedback in natural language (Likert-scale) than numerical scales. Notably, human evaluations on end-to-end fine-tuned models using separate feedback from these multimodal judges provide similar conclusions, further confirming the effectiveness of MJ-Bench. All data, code, models are available at https://huggingface.co/MJ-Bench.


Calibrated Self-Rewarding Vision Language Models

arXiv.org Artificial Intelligence

Large Vision-Language Models (LVLMs) have made substantial progress by integrating pre-trained large language models (LLMs) and vision models through instruction tuning. Despite these advancements, LVLMs often exhibit the hallucination phenomenon, where generated text responses appear linguistically plausible but contradict the input image, indicating a misalignment between image and text pairs. This misalignment arises because the model tends to prioritize textual information over visual input, even when both the language model and visual representations are of high quality. Existing methods leverage additional models or human annotations to curate preference data and enhance modality alignment through preference optimization. These approaches may not effectively reflect the target LVLM's preferences, making the curated preferences easily distinguishable. Our work addresses these challenges by proposing the Calibrated Self-Rewarding (CSR) approach, which enables the model to self-improve by iteratively generating candidate responses, evaluating the reward for each response, and curating preference data for fine-tuning. In the reward modeling, we employ a step-wise strategy and incorporate visual constraints into the self-rewarding process to place greater emphasis on visual input. Empirical results demonstrate that CSR enhances performance and reduces hallucinations across ten benchmarks and tasks, achieving substantial improvements over existing methods by 7.62%. Our empirical results are further supported by rigorous theoretical analysis, under mild assumptions, verifying the effectiveness of introducing visual constraints into the self-rewarding paradigm. Additionally, CSR shows compatibility with different vision-language models and the ability to incrementally improve performance through iterative fine-tuning. Our data and code are available at https://github.com/YiyangZhou/CSR.


How Many Unicorns Are in This Image? A Safety Evaluation Benchmark for Vision LLMs

arXiv.org Artificial Intelligence

This work focuses on the potential of Vision LLMs (VLLMs) in visual reasoning. Different from prior studies, we shift our focus from evaluating standard performance to introducing a comprehensive safety evaluation suite, covering both out-of-distribution (OOD) generalization and adversarial robustness. For the OOD evaluation, we present two novel VQA datasets, each with one variant, designed to test model performance under challenging conditions. In exploring adversarial robustness, we propose a straightforward attack strategy for misleading VLLMs to produce visual-unrelated responses. Moreover, we assess the efficacy of two jailbreaking strategies, targeting either the vision or language component of VLLMs. Our evaluation of 21 diverse models, ranging from open-source VLLMs to GPT-4V, yields interesting observations: 1) Current VLLMs struggle with OOD texts but not images, unless the visual information is limited; and 2) These VLLMs can be easily misled by deceiving vision encoders only, and their vision-language training often compromise safety protocols. We release this safety evaluation suite at https://github.com/UCSC-VLAA/vllm-safety-benchmark.


Holistic Analysis of Hallucination in GPT-4V(ision): Bias and Interference Challenges

arXiv.org Artificial Intelligence

While GPT-4V(ision) impressively models both visual and textual information simultaneously, it's hallucination behavior has not been systematically assessed. To bridge this gap, we introduce a new benchmark, namely, the Bias and Interference Challenges in Visual Language Models (Bingo). This benchmark is designed to evaluate and shed light on the two common types of hallucinations in visual language models: bias and interference. Here, bias refers to the model's tendency to hallucinate certain types of responses, possibly due to imbalance in its training data. Interference pertains to scenarios where the judgment of GPT-4V(ision) can be disrupted due to how the text prompt is phrased or how the input image is presented. We identify a notable regional bias, whereby GPT-4V(ision) is better at interpreting Western images or images with English writing compared to images from other countries or containing text in other languages. Moreover, GPT-4V(ision) is vulnerable to leading questions and is often confused when interpreting multiple images together. Popular mitigation approaches, such as self-correction and chain-of-thought reasoning, are not effective in resolving these challenges. We also identified similar biases and interference vulnerabilities with LLaVA and Bard. Our results characterize the hallucination challenges in GPT-4V(ision) and state-of-the-art visual-language models, and highlight the need for new solutions. The Bingo benchmark is available at https://github.com/gzcch/Bingo.


Analyzing and Mitigating Object Hallucination in Large Vision-Language Models

arXiv.org Artificial Intelligence

Large vision-language models (LVLMs) have shown remarkable abilities in understanding visual information with human languages. However, LVLMs still suffer from object hallucination, which is the problem of generating descriptions that include objects that do not actually exist in the images. This can negatively impact many vision-language tasks, such as visual summarization and reasoning. To address this issue, we propose a simple yet powerful algorithm, LVLM Hallucination Revisor (LURE), to post-hoc rectify object hallucination in LVLMs by reconstructing less hallucinatory descriptions. LURE is grounded in a rigorous statistical analysis of the key factors underlying object hallucination, including co-occurrence (the frequent appearance of certain objects alongside others in images), uncertainty (objects with higher uncertainty during LVLM decoding), and object position (hallucination often appears in the later part of the generated text). LURE can also be seamlessly integrated with any LVLMs. We evaluate LURE on six open-source LVLMs, achieving a 23% improvement in general object hallucination evaluation metrics over the previous best approach. In both GPT and human evaluations, LURE consistently ranks at the top. Our data and code are available at https://github.com/YiyangZhou/LURE.


A Novel Approach for Effective Multi-View Clustering with Information-Theoretic Perspective

arXiv.org Artificial Intelligence

Multi-view clustering (MVC) is a popular technique for improving clustering performance using various data sources. However, existing methods primarily focus on acquiring consistent information while often neglecting the issue of redundancy across multiple views. This study presents a new approach called Sufficient Multi-View Clustering (SUMVC) that examines the multi-view clustering framework from an information-theoretic standpoint. Our proposed method consists of two parts. Firstly, we develop a simple and reliable multi-view clustering method SCMVC (simple consistent multi-view clustering) that employs variational analysis to generate consistent information. Secondly, we propose a sufficient representation lower bound to enhance consistent information and minimise unnecessary information among views. The proposed SUMVC method offers a promising solution to the problem of multi-view clustering and provides a new perspective for analyzing multi-view data. To verify the effectiveness of our model, we conducted a theoretical analysis based on the Bayes Error Rate, and experiments on multiple multi-view datasets demonstrate the superior performance of SUMVC.