Cohen, Lee
Two Tickets are Better than One: Fair and Accurate Hiring Under Strategic LLM Manipulations
Cohen, Lee, Hsieh, Jack, Hong, Connie, Shen, Judy Hanwen
In an era of increasingly capable foundation models, job seekers are turning to generative AI tools to enhance their application materials. However, unequal access to and knowledge about generative AI tools can harm both employers and candidates by reducing the accuracy of hiring decisions and giving some candidates an unfair advantage. To address these challenges, we introduce a new variant of the strategic classification framework tailored to manipulations performed using large language models, accommodating varying levels of manipulations and stochastic outcomes. We propose a ``two-ticket'' scheme, where the hiring algorithm applies an additional manipulation to each submitted resume and considers this manipulated version together with the original submitted resume. We establish theoretical guarantees for this scheme, showing improvements for both the fairness and accuracy of hiring decisions when the true positive rate is maximized subject to a no false positives constraint. We further generalize this approach to an $n$-ticket scheme and prove that hiring outcomes converge to a fixed, group-independent decision, eliminating disparities arising from differential LLM access. Finally, we empirically validate our framework and the performance of our two-ticket scheme on real resumes using an open-source resume screening tool.
Probably Approximately Precision and Recall Learning
Cohen, Lee, Mansour, Yishay, Moran, Shay, Shao, Han
Precision and Recall are foundational metrics in machine learning where both accurate predictions and comprehensive coverage are essential, such as in recommender systems and multi-label learning. In these tasks, balancing precision (the proportion of relevant items among those predicted) and recall (the proportion of relevant items successfully predicted) is crucial. A key challenge is that one-sided feedback--where only positive examples are observed during training--is inherent in many practical problems. For instance, in recommender systems like YouTube, training data only consists of videos that a user has actively selected, while unselected items remain unseen. Despite this lack of negative feedback in training, avoiding undesirable recommendations at test time is essential. We introduce a PAC learning framework where each hypothesis is represented by a graph, with edges indicating positive interactions, such as between users and items. This framework subsumes the classical binary and multi-class PAC learning models as well as multi-label learning with partial feedback, where only a single random correct label per example is observed, rather than all correct labels. Our work uncovers a rich statistical and algorithmic landscape, with nuanced boundaries on what can and cannot be learned. Notably, classical methods like Empirical Risk Minimization fail in this setting, even for simple hypothesis classes with only two hypotheses. To address these challenges, we develop novel algorithms that learn exclusively from positive data, effectively minimizing both precision and recall losses. Specifically, in the realizable setting, we design algorithms that achieve optimal sample complexity guarantees. In the agnostic case, we show that it is impossible to achieve additive error guarantees--as is standard in PAC learning--and instead obtain meaningful multiplicative approximations.
Learnability Gaps of Strategic Classification
Cohen, Lee, Mansour, Yishay, Moran, Shay, Shao, Han
In contrast with standard classification tasks, strategic classification involves agents strategically modifying their features in an effort to receive favorable predictions. For instance, given a classifier determining loan approval based on credit scores, applicants may open or close their credit cards to fool the classifier. The learning goal is to find a classifier robust against strategic manipulations. Various settings, based on what and when information is known, have been explored in strategic classification. In this work, we focus on addressing a fundamental question: the learnability gaps between strategic classification and standard learning. We essentially show that any learnable class is also strategically learnable: we first consider a fully informative setting, where the manipulation structure (which is modeled by a manipulation graph $G^\star$) is known and during training time the learner has access to both the pre-manipulation data and post-manipulation data. We provide nearly tight sample complexity and regret bounds, offering significant improvements over prior results. Then, we relax the fully informative setting by introducing two natural types of uncertainty. First, following Ahmadi et al. (2023), we consider the setting in which the learner only has access to the post-manipulation data. We improve the results of Ahmadi et al. (2023) and close the gap between mistake upper bound and lower bound raised by them. Our second relaxation of the fully informative setting introduces uncertainty to the manipulation structure. That is, we assume that the manipulation graph is unknown but belongs to a known class of graphs. We provide nearly tight bounds on the learning complexity in various unknown manipulation graph settings. Notably, our algorithm in this setting is of independent interest and can be applied to other problems such as multi-label learning.
Bayesian Strategic Classification
Cohen, Lee, Sharifi-Malvajerdi, Saeed, Stangl, Kevin, Vakilian, Ali, Ziani, Juba
In strategic classification, agents modify their features, at a cost, to ideally obtain a positive classification from the learner's classifier. The typical response of the learner is to carefully modify their classifier to be robust to such strategic behavior. When reasoning about agent manipulations, most papers that study strategic classification rely on the following strong assumption: agents fully know the exact parameters of the deployed classifier by the learner. This often is an unrealistic assumption when using complex or proprietary machine learning techniques in real-world prediction tasks. We initiate the study of partial information release by the learner in strategic classification. We move away from the traditional assumption that agents have full knowledge of the classifier. Instead, we consider agents that have a common distributional prior on which classifier the learner is using. The learner in our model can reveal truthful, yet not necessarily complete, information about the deployed classifier to the agents. The learner's goal is to release just enough information about the classifier to maximize accuracy. We show how such partial information release can, counter-intuitively, benefit the learner's accuracy, despite increasing agents' abilities to manipulate. We show that while it is intractable to compute the best response of an agent in the general case, there exist oracle-efficient algorithms that can solve the best response of the agents when the learner's hypothesis class is the class of linear classifiers, or when the agents' cost function satisfies a natural notion of submodularity as we define. We then turn our attention to the learner's optimization problem and provide both positive and negative results on the algorithmic problem of how much information the learner should release about the classifier to maximize their expected accuracy.
Eliciting User Preferences for Personalized Multi-Objective Decision Making through Comparative Feedback
Shao, Han, Cohen, Lee, Blum, Avrim, Mansour, Yishay, Saha, Aadirupa, Walter, Matthew R.
In classic reinforcement learning (RL) and decision making problems, policies are evaluated with respect to a scalar reward function, and all optimal policies are the same with regards to their expected return. However, many real-world problems involve balancing multiple, sometimes conflicting, objectives whose relative priority will vary according to the preferences of each user. Consequently, a policy that is optimal for one user might be sub-optimal for another. In this work, we propose a multi-objective decision making framework that accommodates different user preferences over objectives, where preferences are learned via policy comparisons. Our model consists of a Markov decision process with a vector-valued reward function, with each user having an unknown preference vector that expresses the relative importance of each objective. The goal is to efficiently compute a near-optimal policy for a given user. We consider two user feedback models. We first address the case where a user is provided with two policies and returns their preferred policy as feedback. We then move to a different user feedback model, where a user is instead provided with two small weighted sets of representative trajectories and selects the preferred one. In both cases, we suggest an algorithm that finds a nearly optimal policy for the user using a small number of comparison queries.
Incentivized Collaboration in Active Learning
Cohen, Lee, Shao, Han
In collaborative active learning, where multiple agents try to learn labels from a common hypothesis, we introduce an innovative framework for incentivized collaboration. Here, rational agents aim to obtain labels for their data sets while keeping label complexity at a minimum. We focus on designing (strict) individually rational (IR) collaboration protocols, ensuring that agents cannot reduce their expected label complexity by acting individually. We first show that given any optimal active learning algorithm, the collaboration protocol that runs the algorithm as is over the entire data is already IR. However, computing the optimal algorithm is NP-hard. We therefore provide collaboration protocols that achieve (strict) IR and are comparable with the best known tractable approximation algorithm in terms of label complexity.
Finding Safe Zones of policies Markov Decision Processes
Cohen, Lee, Mansour, Yishay, Moshkovitz, Michal
Given a policy of a Markov Decision Process, we define a SafeZone as a subset of states, such that most of the policy's trajectories are confined to this subset. The quality of a SafeZone is parameterized by the number of states and the escape probability, i.e., the probability that a random trajectory will leave the subset. SafeZones are especially interesting when they have a small number of states and low escape probability. We study the complexity of finding optimal SafeZones, and show that in general, the problem is computationally hard. Our main result is a bi-criteria approximation learning algorithm with a factor of almost $2$ approximation for both the escape probability and SafeZone size, using a polynomial size sample complexity.
Sequential Strategic Screening
Cohen, Lee, Sharifi-Malvajerdi, Saeed, Stangl, Kevin, Vakilian, Ali, Ziani, Juba
We initiate the study of strategic behavior in screening processes with multiple classifiers. We focus on two contrasting settings: a conjunctive setting in which an individual must satisfy all classifiers simultaneously, and a sequential setting in which an individual to succeed must satisfy classifiers one at a time. In other words, we introduce the combination of strategic classification with screening processes. We show that sequential screening pipelines exhibit new and surprising behavior where individuals can exploit the sequential ordering of the tests to zig-zag between classifiers without having to simultaneously satisfy all of them. We demonstrate an individual can obtain a positive outcome using a limited manipulation budget even when far from the intersection of the positive regions of every classifier. Finally, we consider a learner whose goal is to design a sequential screening process that is robust to such manipulations, and provide a construction for the learner that optimizes a natural objective.
Sample Complexity of Uniform Convergence for Multicalibration
Shabat, Eliran, Cohen, Lee, Mansour, Yishay
There is a growing interest in societal concerns in machine learning systems, especially in fairness. Multicalibration gives a comprehensive methodology to address group fairness. In this work, we address the multicalibration error and decouple it from the prediction error. The importance of decoupling the fairness metric (multicalibration) and the accuracy (prediction error) is due to the inherent trade-off between the two, and the societal decision regarding the "right tradeoff" (as imposed many times by regulators). Our work gives sample complexity bounds for uniform convergence guarantees of multicalibration error, which implies that regardless of the accuracy, we can guarantee that the empirical and (true) multicalibration errors are close. We emphasize that our results: (1) are more general than previous bounds, as they apply to both agnostic and realizable settings, and do not rely on a specific type of algorithm (such as deferentially private), (2) improve over previous multicalibration sample complexity bounds and (3) implies uniform convergence guarantees for the classical calibration error.
Efficient candidate screening under multiple tests and implications for fairness
Cohen, Lee, Lipton, Zachary C., Mansour, Yishay
When recruiting job candidates, employers rarely observe their underlying skill level directly. Instead, they must administer a series of interviews and/or collate other noisy signals in order to estimate the worker's skill. Traditional economics papers address screening models where employers access worker skill via a single noisy signal. In this paper, we extend this theoretical analysis to a multi-test setting, considering both Bernoulli and Gaussian models. We analyze the optimal employer policy both when the employer sets a fixed number of tests per candidate and when the employer can set a dynamic policy, assigning further tests adaptively based on results from the previous tests. To start, we characterize the optimal policy when employees constitute a single group, demonstrating some interesting trade-offs. Subsequently, we address the multi-group setting, demonstrating that when the noise levels vary across groups, a fundamental impossibility emerges whereby we cannot administer the same number of tests, subject candidates to the same decision rule, and yet realize the same outcomes in both groups.