Clegg, Alexander
RobotMover: Learning to Move Large Objects by Imitating the Dynamic Chain
Li, Tianyu, Truong, Joanne, Yang, Jimmy, Clegg, Alexander, Rai, Akshara, Ha, Sehoon, Puig, Xavier
Moving large objects, such as furniture, is a critical capability for robots operating in human environments. This task presents significant challenges due to two key factors: the need to synchronize whole-body movements to prevent collisions between the robot and the object, and the under-actuated dynamics arising from the substantial size and weight of the objects. These challenges also complicate performing these tasks via teleoperation. In this work, we introduce \method, a generalizable learning framework that leverages human-object interaction demonstrations to enable robots to perform large object manipulation tasks. Central to our approach is the Dynamic Chain, a novel representation that abstracts human-object interactions so that they can be retargeted to robotic morphologies. The Dynamic Chain is a spatial descriptor connecting the human and object root position via a chain of nodes, which encode the position and velocity of different interaction keypoints. We train policies in simulation using Dynamic-Chain-based imitation rewards and domain randomization, enabling zero-shot transfer to real-world settings without fine-tuning. Our approach outperforms both learning-based methods and teleoperation baselines across six evaluation metrics when tested on three distinct object types, both in simulation and on physical hardware. Furthermore, we successfully apply the learned policies to real-world tasks, such as moving a trash cart and rearranging chairs.
PARTNR: A Benchmark for Planning and Reasoning in Embodied Multi-agent Tasks
Chang, Matthew, Chhablani, Gunjan, Clegg, Alexander, Cote, Mikael Dallaire, Desai, Ruta, Hlavac, Michal, Karashchuk, Vladimir, Krantz, Jacob, Mottaghi, Roozbeh, Parashar, Priyam, Patki, Siddharth, Prasad, Ishita, Puig, Xavier, Rai, Akshara, Ramrakhya, Ram, Tran, Daniel, Truong, Joanne, Turner, John M., Undersander, Eric, Yang, Tsung-Yen
We present a benchmark for Planning And Reasoning Tasks in humaN-Robot collaboration (PARTNR) designed to study human-robot coordination in household activities. PARTNR tasks exhibit characteristics of everyday tasks, such as spatial, temporal, and heterogeneous agent capability constraints. We employ a semi-automated task generation pipeline using Large Language Models (LLMs), incorporating simulation in the loop for grounding and verification. PARTNR stands as the largest benchmark of its kind, comprising 100,000 natural language tasks, spanning 60 houses and 5,819 unique objects. We analyze state-of-the-art LLMs on PARTNR tasks, across the axes of planning, perception and skill execution. The analysis reveals significant limitations in SoTA models, such as poor coordination and failures in task tracking and recovery from errors. When LLMs are paired with real humans, they require 1.5x as many steps as two humans collaborating and 1.1x more steps than a single human, underscoring the potential for improvement in these models. We further show that fine-tuning smaller LLMs with planning data can achieve performance on par with models 9 times larger, while being 8.6x faster at inference. Overall, PARTNR highlights significant challenges facing collaborative embodied agents and aims to drive research in this direction.
Towards Open-World Mobile Manipulation in Homes: Lessons from the Neurips 2023 HomeRobot Open Vocabulary Mobile Manipulation Challenge
Yenamandra, Sriram, Ramachandran, Arun, Khanna, Mukul, Yadav, Karmesh, Vakil, Jay, Melnik, Andrew, Bรผttner, Michael, Harz, Leon, Brown, Lyon, Nandi, Gora Chand, PS, Arjun, Yadav, Gaurav Kumar, Kala, Rahul, Haschke, Robert, Luo, Yang, Zhu, Jinxin, Han, Yansen, Lu, Bingyi, Gu, Xuan, Liu, Qinyuan, Zhao, Yaping, Ye, Qiting, Dou, Chenxiao, Chua, Yansong, Kuzma, Volodymyr, Humennyy, Vladyslav, Partsey, Ruslan, Francis, Jonathan, Chaplot, Devendra Singh, Chhablani, Gunjan, Clegg, Alexander, Gervet, Theophile, Jain, Vidhi, Ramrakhya, Ram, Szot, Andrew, Wang, Austin, Yang, Tsung-Yen, Edsinger, Aaron, Kemp, Charlie, Shah, Binit, Kira, Zsolt, Batra, Dhruv, Mottaghi, Roozbeh, Bisk, Yonatan, Paxton, Chris
In order to develop robots that can effectively serve as versatile and capable home assistants, it is crucial for them to reliably perceive and interact with a wide variety of objects across diverse environments. To this end, we proposed Open Vocabulary Mobile Manipulation as a key benchmark task for robotics: finding any object in a novel environment and placing it on any receptacle surface within that environment. We organized a NeurIPS 2023 competition featuring both simulation and real-world components to evaluate solutions to this task. Our baselines on the most challenging version of this task, using real perception in simulation, achieved only an 0.8% success rate; by the end of the competition, the best participants achieved an 10.8\% success rate, a 13x improvement. We observed that the most successful teams employed a variety of methods, yet two common threads emerged among the best solutions: enhancing error detection and recovery, and improving the integration of perception with decision-making processes. In this paper, we detail the results and methodologies used, both in simulation and real-world settings. We discuss the lessons learned and their implications for future research. Additionally, we compare performance in real and simulated environments, emphasizing the necessity for robust generalization to novel settings.
ACE: Adversarial Correspondence Embedding for Cross Morphology Motion Retargeting from Human to Nonhuman Characters
Li, Tianyu, Won, Jungdam, Clegg, Alexander, Kim, Jeonghwan, Rai, Akshara, Ha, Sehoon
Motion retargeting is a promising approach for generating natural and compelling animations for nonhuman characters. However, it is challenging to translate human movements into semantically equivalent motions for target characters with different morphologies due to the ambiguous nature of the problem. This work presents a novel learning-based motion retargeting framework, Adversarial Correspondence Embedding (ACE), to retarget human motions onto target characters with different body dimensions and structures. Our framework is designed to produce natural and feasible robot motions by leveraging generative-adversarial networks (GANs) while preserving high-level motion semantics by introducing an additional feature loss. In addition, we pretrain a robot motion prior that can be controlled in a latent embedding space and seek to establish a compact correspondence. We demonstrate that the proposed framework can produce retargeted motions for three different characters -- a quadrupedal robot with a manipulator, a crab character, and a wheeled manipulator. We further validate the design choices of our framework by conducting baseline comparisons and a user study. We also showcase sim-to-real transfer of the retargeted motions by transferring them to a real Spot robot.
Learning to Transfer In-Hand Manipulations Using a Greedy Shape Curriculum
Zhang, Yunbo, Clegg, Alexander, Ha, Sehoon, Turk, Greg, Ye, Yuting
In-hand object manipulation is challenging to simulate due to complex contact dynamics, non-repetitive finger gaits, and the need to indirectly control unactuated objects. Further adapting a successful manipulation skill to new objects with different shapes and physical properties is a similarly challenging problem. In this work, we show that natural and robust in-hand manipulation of simple objects in a dynamic simulation can be learned from a high quality motion capture example via deep reinforcement learning with careful designs of the imitation learning problem. We apply our approach on both single-handed and two-handed dexterous manipulations of diverse object shapes and motions. We then demonstrate further adaptation of the example motion to a more complex shape through curriculum learning on intermediate shapes morphed between the source and target object. While a naive curriculum of progressive morphs often falls short, we propose a simple greedy curriculum search algorithm that can successfully apply to a range of objects such as a teapot, bunny, bottle, train, and elephant.
Modeling Collaboration for Robot-assisted Dressing Tasks
Clegg, Alexander, Kemp, Charles C., Turk, Greg, Liu, C. Karen
Modeling Collaboration for Robot-assisted Dressing T asks Alexander Clegg, 1, 2, Charles C. Kemp 1, Greg Turk 1, and C. Karen Liu 1, 3 Abstract -- We investigated the application of haptic aware feedback control and deep reinforcement learning to robot assisted dressing in simulation. We did so by modeling both human and robot control policies as separate neural networks and training them both via TRPO. We show that co-optimization, training separate human and robot control policies simultaneously, can be a valid approach to finding successful strategies for human/robot cooperation on assisted dressing tasks. Typical tasks are putting on one or both sleeves of a hospital gown or pulling on a T -shirt. We also present a method for modeling human dressing behavior under variations in capability including: unilateral muscle weakness, Dyskinesia, and limited range of motion. Using this method and behavior model, we demonstrate discovery of successful strategies for a robot to assist humans with a variety of capability limitations. I NTRODUCTION It becomes ever more likely that robots will be found in homes and businesses, physically interacting with the humans they encounter. With this in mind, researchers have begun preparing robots for the physical interaction tasks which they will face in a human world. Dressing tasks in particular present a multitude of privacy, safety, and independence concerns which strongly motivate the application of robotic assistance [1]. However, clothing exhibits complex dynamics and often occludes the body, making it difficult to accurately observe the task state and predict the results of planned interactions. These challenges are compounded by the risk of injuring the human or damaging the robot as well as the sparsity of data that could be collected during physical task exploration.