Goto

Collaborating Authors

 Clark, Ronald


XIRVIO: Critic-guided Iterative Refinement for Visual-Inertial Odometry with Explainable Adaptive Weighting

arXiv.org Artificial Intelligence

Abstract-- We introduce XIRVIO, a transformer-based Generative Adversarial Network (GAN) framework for monocular visual inertial odometry (VIO). By taking sequences of imag es and 6-DoF inertial measurements as inputs, XIRVIO's generator predicts pose trajectories through an iterative refine ment process which are then evaluated by the critic to select the iteration with the optimised prediction. Additionally, th e self-emergent adaptive sensor weighting reveals how XIRVIO attends to each sensory input based on contextual cues in the da ta, making it a promising approach for achieving explainabilit y in safety-critical VIO applications. Evaluations on the KI TTI dataset demonstrate that XIRVIO matches well-known state-of-the-art learning-based methods in terms of both transla tion and rotation errors. Accurate and reliable state estimation is fundamental to th e autonomy of robotic systems, but can be challenging when navigating cluttered indoor spaces, dynamic urban environ - ments, and unstructured natural terrains like forests [1]- [4]. VIO leverages the complementary strengths of cameras and inertial measurement units (IMUs) to estimate the camera motion, but its performance is inherently tied to the reliab ility of each sensor under varying conditions.


Humanity's Last Exam

arXiv.org Artificial Intelligence

Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 3,000 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.


CodeMonkeys: Scaling Test-Time Compute for Software Engineering

arXiv.org Artificial Intelligence

Scaling test-time compute is a promising axis for improving LLM capabilities. However, test-time compute can be scaled in a variety of ways, and effectively combining different approaches remains an active area of research. Here, we explore this problem in the context of solving real-world GitHub issues from the SWE-bench dataset. Our system, named CodeMonkeys, allows models to iteratively edit a codebase by jointly generating and running a testing script alongside their draft edit. We sample many of these multi-turn trajectories for every issue to generate a collection of candidate edits. This approach lets us scale "serial" test-time compute by increasing the number of iterations per trajectory and "parallel" test-time compute by increasing the number of trajectories per problem. With parallel scaling, we can amortize up-front costs across multiple downstream samples, allowing us to identify relevant codebase context using the simple method of letting an LLM read every file. In order to select between candidate edits, we combine voting using model-generated tests with a final multi-turn trajectory dedicated to selection. Overall, CodeMonkeys resolves 57.4% of issues from SWE-bench Verified using a budget of approximately 2300 USD. Our selection method can also be used to combine candidates from different sources. Selecting over an ensemble of edits from existing top SWE-bench Verified submissions obtains a score of 66.2% and outperforms the best member of the ensemble on its own. We fully release our code and data at https://scalingintelligence.stanford.edu/pubs/codemonkeys.


Olympus: A Universal Task Router for Computer Vision Tasks

arXiv.org Artificial Intelligence

We introduce Olympus, a new approach that transforms Multimodal Large Language Models (MLLMs) into a unified framework capable of handling a wide array of computer vision tasks. Utilizing a controller MLLM, Olympus delegates over 20 specialized tasks across images, videos, and 3D objects to dedicated modules. This instruction-based routing enables complex workflows through chained actions without the need for training heavy generative models. Olympus easily integrates with existing MLLMs, expanding their capabilities with comparable performance. Experimental results demonstrate that Olympus achieves an average routing accuracy of 94.75% across 20 tasks and precision of 91.82% in chained action scenarios, showcasing its effectiveness as a universal task router that can solve a diverse range of computer vision tasks. Project page: http://yuanze-lin.me/Olympus_page/


MALT: Improving Reasoning with Multi-Agent LLM Training

arXiv.org Artificial Intelligence

Enabling effective collaboration among LLMs is a crucial step toward developing autonomous systems capable of solving complex problems. While LLMs are typically used as single-model generators, where humans critique and refine their outputs, the potential for jointly-trained collaborative models remains largely unexplored. Despite promising results in multi-agent communication and debate settings, little progress has been made in training models to work together on tasks. In this paper, we present a first step toward "Multi-agent LLM training" (MALT) on reasoning problems. Our approach employs a sequential multi-agent setup with heterogeneous LLMs assigned specialized roles: a generator, verifier, and refinement model iteratively solving problems. We propose a trajectory-expansion-based synthetic data generation process and a credit assignment strategy driven by joint outcome based rewards. This enables our post-training setup to utilize both positive and negative trajectories to autonomously improve each model's specialized capabilities as part of a joint sequential system. We evaluate our approach across MATH, GSM8k, and CQA, where MALT on Llama 3.1 8B models achieves relative improvements of 14.14%, 7.12%, and 9.40% respectively over the same baseline model. This demonstrates an early advance in multi-agent cooperative capabilities for performance on mathematical and common sense reasoning questions. More generally, our work provides a concrete direction for research around multi-agent LLM training approaches.


Toward Robust Real-World Audio Deepfake Detection: Closing the Explainability Gap

arXiv.org Artificial Intelligence

The rapid proliferation of AI-manipulated or generated audio deepfakes poses serious challenges to media integrity and election security. Current AI-driven detection solutions lack explainability and underperform in real-world settings. In this paper, we introduce novel explainability methods for state-of-the-art transformer-based audio deepfake detectors and open-source a novel benchmark for real-world generalizability. By narrowing the explainability gap between transformer-based audio deepfake detectors and traditional methods, our results not only build trust with human experts, but also pave the way for unlocking the potential of citizen intelligence to overcome the scalability issue in audio deepfake detection.


Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge

arXiv.org Artificial Intelligence

In recent years, multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets, enabling them to generally understand images well. However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs, limiting their ability to answer questions requiring an understanding of detailed or localized visual elements. Drawing inspiration from the Retrieval-Augmented Generation (RAG) concept, this paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models (e.g., instance segmentation/OCR models), into MLLMs. This is a promising yet underexplored direction for enhancing MLLMs' performance. Our approach diverges from concurrent works, which transform external knowledge into additional text prompts, necessitating the model to indirectly learn the correspondence between visual content and text coordinates. Instead, we propose embedding fine-grained knowledge information directly into a spatial embedding map as a visual prompt. This design can be effortlessly incorporated into various MLLMs, such as LLaVA and Mipha, considerably improving their visual understanding performance. Through rigorous experiments, we demonstrate that our method can enhance MLLM performance across nine benchmarks, amplifying their fine-grained context-aware capabilities.


EVCL: Elastic Variational Continual Learning with Weight Consolidation

arXiv.org Machine Learning

Continual learning aims to allow models to learn new tasks without forgetting what has been learned before. This work introduces Elastic Variational Continual Learning with Weight Consolidation (EVCL), a novel hybrid model that integrates the variational posterior approximation mechanism of Variational Continual Learning (VCL) with the regularization-based parameter-protection strategy of Elastic Weight Consolidation (EWC). By combining the strengths of both methods, EVCL effectively mitigates catastrophic forgetting and enables better capture of dependencies between model parameters and task-specific data. Evaluated on five discriminative tasks, EVCL consistently outperforms existing baselines in both domain-incremental and task-incremental learning scenarios for deep discriminative models.


DreamPolisher: Towards High-Quality Text-to-3D Generation via Geometric Diffusion

arXiv.org Artificial Intelligence

We present DreamPolisher, a novel Gaussian Splatting based method with geometric guidance, tailored to learn cross-view consistency and intricate detail from textual descriptions. While recent progress on text-to-3D generation methods have been promising, prevailing methods often fail to ensure view-consistency and textural richness. This problem becomes particularly noticeable for methods that work with text input alone. To address this, we propose a two-stage Gaussian Splatting based approach that enforces geometric consistency among views. Initially, a coarse 3D generation undergoes refinement via geometric optimization. Subsequently, we use a ControlNet driven refiner coupled with the geometric consistency term to improve both texture fidelity and overall consistency of the generated 3D asset. Empirical evaluations across diverse textual prompts spanning various object categories demonstrate the efficacy of DreamPolisher in generating consistent and realistic 3D objects, aligning closely with the semantics of the textual instructions.


End-to-End Egospheric Spatial Memory

arXiv.org Artificial Intelligence

Spatial memory, or the ability to remember and recall specific locations and objects, is central to autonomous agents' ability to carry out tasks in real environments. However, most existing artificial memory modules are not very adept at storing spatial information. We propose a parameter-free module, Egospheric Spatial Memory (ESM), which encodes the memory in an ego-sphere around the agent, enabling expressive 3D representations. ESM can be trained end-to-end via either imitation or reinforcement learning, and improves both training efficiency and final performance against other memory baselines on both drone and manipulator visuomotor control tasks. The explicit egocentric geometry also enables us to seamlessly combine the learned controller with other non-learned modalities, such as local obstacle avoidance. We further show applications to semantic segmentation on the ScanNet dataset, where ESM naturally combines image-level and map-level inference modalities. Through our broad set of experiments, we show that ESM provides a general computation graph for embodied spatial reasoning, and the module forms a bridge between real-time mapping systems and differentiable memory architectures. Egocentric spatial memory is central to our understanding of spatial reasoning in biology (Klatzky, 1998; Burgess, 2006), where an embodied agent constantly carries with it a local map of its surrounding geometry. Such representations have particular significance for action selection and motor control (Hinman et al., 2019). For robotics and embodied AI, the benefits of a persistent local spatial memory are also clear. Such a system has the potential to run for long periods, and bypass both the memory and runtime complexities of large scale world-centric mapping. Peters et al. (2001) propose an EgoSphere as being a particularly suitable representation for robotics, and more recent works have utilized ego-centric formulations for planar robot mapping (Fankhauser et al., 2014), drone obstacle avoidance (Fragoso et al., 2018) and mono-to-depth (Liu et al., 2019). In parallel with these ego-centric mapping systems, a new paradigm of differentiable memory architectures has arisen, where a memory bank is augmented to a neural network, which can then learn read and write operations (Weston et al., 2014; Graves et al., 2014; Sukhbaatar et al., 2015). When compared to Recurrent Neural Networks (RNNs), the persistent memory circumvents issues of vanishing or exploding gradients, enabling solutions to long-horizon tasks.