Chu, Wenda
InverseBench: Benchmarking Plug-and-Play Diffusion Priors for Inverse Problems in Physical Sciences
Zheng, Hongkai, Chu, Wenda, Zhang, Bingliang, Wu, Zihui, Wang, Austin, Feng, Berthy T., Zou, Caifeng, Sun, Yu, Kovachki, Nikola, Ross, Zachary E., Bouman, Katherine L., Yue, Yisong
Plug-and-play diffusion priors (PnPDP) have emerged as a promising research direction for solving inverse problems. However, current studies primarily focus on natural image restoration, leaving the performance of these algorithms in scientific inverse problems largely unexplored. To address this gap, we introduce \textsc{InverseBench}, a framework that evaluates diffusion models across five distinct scientific inverse problems. These problems present unique structural challenges that differ from existing benchmarks, arising from critical scientific applications such as optical tomography, medical imaging, black hole imaging, seismology, and fluid dynamics. With \textsc{InverseBench}, we benchmark 14 inverse problem algorithms that use plug-and-play diffusion priors against strong, domain-specific baselines, offering valuable new insights into the strengths and weaknesses of existing algorithms. To facilitate further research and development, we open-source the codebase, along with datasets and pre-trained models, at https://devzhk.github.io/InverseBench/.
Split Gibbs Discrete Diffusion Posterior Sampling
Chu, Wenda, Song, Yang, Yue, Yisong
We study the problem of posterior sampling in discrete-state spaces using discrete diffusion models. While posterior sampling methods for continuous diffusion models have achieved remarkable progress, analogous methods for discrete diffusion models remain challenging. In this work, we introduce a principled plug-and-play discrete diffusion posterior sampling algorithm based on split Gibbs sampling, which we call SG-DPS. Our algorithm enables reward-guided generation and solving inverse problems in discrete-state spaces. We demonstrate that SG-DPS converges to the true posterior distribution on synthetic benchmarks, and enjoys state-of-the-art posterior sampling performance on a range of benchmarks for discrete data, achieving up to 2x improved performance compared to existing baselines.
Ensemble Kalman Diffusion Guidance: A Derivative-free Method for Inverse Problems
Zheng, Hongkai, Chu, Wenda, Wang, Austin, Kovachki, Nikola, Baptista, Ricardo, Yue, Yisong
When solving inverse problems, it is increasingly popular to use pre-trained diffusion models as plug-and-play priors. This framework can accommodate different forward models without re-training while preserving the generative capability of diffusion models. Despite their success in many imaging inverse problems, most existing methods rely on privileged information such as derivative, pseudo-inverse, or full knowledge about the forward model. This reliance poses a substantial limitation that restricts their use in a wide range of problems where such information is unavailable, such as in many scientific applications. To address this issue, we propose Ensemble Kalman Diffusion Guidance (EnKG) for diffusion models, a derivative-free approach that can solve inverse problems by only accessing forward model evaluations and a pre-trained diffusion model prior. We study the empirical effectiveness of our method across various inverse problems, including scientific settings such as inferring fluid flows and astronomical objects, which are highly non-linear inverse problems that often only permit black-box access to the forward model.
Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing
Zhang, Bingliang, Chu, Wenda, Berner, Julius, Meng, Chenlin, Anandkumar, Anima, Song, Yang
Diffusion models have recently achieved success in solving Bayesian inverse problems with learned data priors. Current methods build on top of the diffusion sampling process, where each denoising step makes small modifications to samples from the previous step. However, this process struggles to correct errors from earlier sampling steps, leading to worse performance in complicated nonlinear inverse problems, such as phase retrieval. To address this challenge, we propose a new method called Decoupled Annealing Posterior Sampling (DAPS) that relies on a novel noise annealing process. Specifically, we decouple consecutive steps in a diffusion sampling trajectory, allowing them to vary considerably from one another while ensuring their time-marginals anneal to the true posterior as we reduce noise levels. This approach enables the exploration of a larger solution space, improving the success rate for accurate reconstructions. We demonstrate that DAPS significantly improves sample quality and stability across multiple image restoration tasks, particularly in complicated nonlinear inverse problems. For example, we achieve a PSNR of 30.72dB on the FFHQ 256 dataset for phase retrieval, which is an improvement of 9.12dB compared to existing methods. Our code is available at the GitHub repository DAPS.
COMMIT: Certifying Robustness of Multi-Sensor Fusion Systems against Semantic Attacks
Huang, Zijian, Chu, Wenda, Li, Linyi, Xu, Chejian, Li, Bo
Multi-sensor fusion systems (MSFs) play a vital role as the perception module in modern autonomous vehicles (AVs). Therefore, ensuring their robustness against common and realistic adversarial semantic transformations, such as rotation and shifting in the physical world, is crucial for the safety of AVs. While empirical evidence suggests that MSFs exhibit improved robustness compared to single-modal models, they are still vulnerable to adversarial semantic transformations. Despite the proposal of empirical defenses, several works show that these defenses can be attacked again by new adaptive attacks. So far, there is no certified defense proposed for MSFs. In this work, we propose the first robustness certification framework COMMIT certify robustness of multi-sensor fusion systems against semantic attacks. In particular, we propose a practical anisotropic noise mechanism that leverages randomized smoothing with multi-modal data and performs a grid-based splitting method to characterize complex semantic transformations. We also propose efficient algorithms to compute the certification in terms of object detection accuracy and IoU for large-scale MSF models. Empirically, we evaluate the efficacy of COMMIT in different settings and provide a comprehensive benchmark of certified robustness for different MSF models using the CARLA simulation platform. We show that the certification for MSF models is at most 48.39% higher than that of single-modal models, which validates the advantages of MSF models. We believe our certification framework and benchmark will contribute an important step towards certifiably robust AVs in practice.
FOCUS: Fairness via Agent-Awareness for Federated Learning on Heterogeneous Data
Chu, Wenda, Xie, Chulin, Wang, Boxin, Li, Linyi, Yin, Lang, Nourian, Arash, Zhao, Han, Li, Bo
Federated learning (FL) allows agents to jointly train a global model without sharing their local data. However, due to the heterogeneous nature of local data, it is challenging to optimize or even define fairness of the trained global model for the agents. For instance, existing work usually considers accuracy equity as fairness for different agents in FL, which is limited, especially under the heterogeneous setting, since it is intuitively "unfair" to enforce agents with high-quality data to achieve similar accuracy to those who contribute low-quality data, which may discourage the agents from participating in FL. In this work, we propose a formal FL fairness definition, fairness via agent-awareness (FAA), which takes different contributions of heterogeneous agents into account. Under FAA, the performance of agents with high-quality data will not be sacrificed just due to the existence of large amounts of agents with low-quality data. In addition, we propose a fair FL training algorithm based on agent clustering (FOCUS) to achieve fairness in FL measured by FAA. Theoretically, we prove the convergence and optimality of FOCUS under mild conditions for linear and general convex loss functions with bounded smoothness. We also prove that FOCUS always achieves higher fairness in terms of FAA compared with standard FedAvg under both linear and general convex loss functions. Empirically, we show that on four FL datasets, including synthetic data, images, and texts, FOCUS achieves significantly higher fairness in terms of FAA while maintaining competitive prediction accuracy compared with FedAvg and state-of-the-art fair FL algorithms.
Physically Realizable Natural-Looking Clothing Textures Evade Person Detectors via 3D Modeling
Hu, Zhanhao, Chu, Wenda, Zhu, Xiaopei, Zhang, Hui, Zhang, Bo, Hu, Xiaolin
Recent works have proposed to craft adversarial clothes for evading person detectors, while they are either only effective at limited viewing angles or very conspicuous to humans. We aim to craft adversarial texture for clothes based on 3D modeling, an idea that has been used to craft rigid adversarial objects such as a 3D-printed turtle. Unlike rigid objects, humans and clothes are non-rigid, leading to difficulties in physical realization. In order to craft natural-looking adversarial clothes that can evade person detectors at multiple viewing angles, we propose adversarial camouflage textures (AdvCaT) that resemble one kind of the typical textures of daily clothes, camouflage textures. We leverage the Voronoi diagram and Gumbel-softmax trick to parameterize the camouflage textures and optimize the parameters via 3D modeling. Moreover, we propose an efficient augmentation pipeline on 3D meshes combining topologically plausible projection (TopoProj) and Thin Plate Spline (TPS) to narrow the gap between digital and real-world objects. We printed the developed 3D texture pieces on fabric materials and tailored them into T-shirts and trousers. Experiments show high attack success rates of these clothes against multiple detectors.
TPC: Transformation-Specific Smoothing for Point Cloud Models
Point cloud models with neural network architectures have achieved great success and have been widely used in safety-critical applications, such as Lidar-based recognition systems in autonomous vehicles. However, such models are shown vulnerable to adversarial attacks which aim to apply stealthy semantic transformations such as rotation and tapering to mislead model predictions. In this paper, we propose a transformation-specific smoothing framework TPC, which provides tight and scalable robustness guarantees for point cloud models against semantic transformation attacks. We first categorize common 3D transformations into three categories: additive (e.g., shearing), composable (e.g., rotation), and indirectly composable (e.g., tapering), and we present generic robustness certification strategies for all categories respectively. We then specify unique certification protocols for a range of specific semantic transformations and their compositions. Extensive experiments on several common 3D transformations show that TPC significantly outperforms the state of the art. For example, our framework boosts the certified accuracy against twisting transformation along z-axis (within 20$^\circ$) from 20.3$\%$ to 83.8$\%$. Codes and models are available at https://github.com/chuwd19/Point-Cloud-Smoothing.
PerAda: Parameter-Efficient and Generalizable Federated Learning Personalization with Guarantees
Xie, Chulin, Huang, De-An, Chu, Wenda, Xu, Daguang, Xiao, Chaowei, Li, Bo, Anandkumar, Anima
Personalized Federated Learning (pFL) has emerged as a promising solution to tackle data heterogeneity across clients in FL. However, existing pFL methods either (1) introduce high communication and computation costs or (2) overfit to local data, which can be limited in scope, and are vulnerable to evolved test samples with natural shifts. In this paper, we propose PerAda, a parameter-efficient pFL framework that reduces communication and computational costs and exhibits superior generalization performance, especially under test-time distribution shifts. PerAda reduces the costs by leveraging the power of pretrained models and only updates and communicates a small number of additional parameters from adapters. PerAda has good generalization since it regularizes each client's personalized adapter with a global adapter, while the global adapter uses knowledge distillation to aggregate generalized information from all clients. Theoretically, we provide generalization bounds to explain why PerAda improves generalization, and we prove its convergence to stationary points under non-convex settings. Empirically, PerAda demonstrates competitive personalized performance (+4.85% on CheXpert) and enables better out-of-distribution generalization (+5.23% on CIFAR-10-C) on different datasets across natural and medical domains compared with baselines, while only updating 12.6% of parameters per model based on the adapter.