Goto

Collaborating Authors

 Choi, Youngsoo


Physics-informed reduced order model with conditional neural fields

arXiv.org Artificial Intelligence

This study presents the conditional neural fields for reduced-order modeling (CNF-ROM) framework to approximate solutions of parametrized partial differential equations (PDEs). The approach combines a parametric neural ODE (PNODE) for modeling latent dynamics over time with a decoder that reconstructs PDE solutions from the corresponding latent states. We introduce a physics-informed learning objective for CNF-ROM, which includes two key components. First, the framework uses coordinate-based neural networks to calculate and minimize PDE residuals by computing spatial derivatives via automatic differentiation and applying the chain rule for time derivatives. Second, exact initial and boundary conditions (IC/BC) are imposed using approximate distance functions (ADFs) [Sukumar and Srivastava, CMAME, 2022]. However, ADFs introduce a trade-off as their second- or higher-order derivatives become unstable at the joining points of boundaries. To address this, we introduce an auxiliary network inspired by [Gladstone et al., NeurIPS ML4PS workshop, 2022]. Our method is validated through parameter extrapolation and interpolation, temporal extrapolation, and comparisons with analytical solutions.


Data-Driven, Parameterized Reduced-order Models for Predicting Distortion in Metal 3D Printing

arXiv.org Artificial Intelligence

In Laser Powder Bed Fusion (LPBF), the applied laser energy produces high thermal gradients that lead to unacceptable final part distortion. Accurate distortion prediction is essential for optimizing the 3D printing process and manufacturing a part that meets geometric accuracy requirements. This study introduces data-driven parameterized reduced-order models (ROMs) to predict distortion in LPBF across various machine process settings. We propose a ROM framework that combines Proper Orthogonal Decomposition (POD) with Gaussian Process Regression (GPR) and compare its performance against a deep-learning based parameterized graph convolutional autoencoder (GCA). The POD-GPR model demonstrates high accuracy, predicting distortions within $\pm0.001mm$, and delivers a computational speed-up of approximately 1800x.


Quantifying Qualitative Insights: Leveraging LLMs to Market Predict

arXiv.org Artificial Intelligence

Recent advancements in Large Language Models (LLMs) have the potential to transform financial analytics by integrating numerical and textual data. However, challenges such as insufficient context when fusing multimodal information and the difficulty in measuring the utility of qualitative outputs, which LLMs generate as text, have limited their effectiveness in tasks such as financial forecasting. This study addresses these challenges by leveraging daily reports from securities firms to create high-quality contextual information. The reports are segmented into text-based key factors and combined with numerical data, such as price information, to form context sets. By dynamically updating few-shot examples based on the query time, the sets incorporate the latest information, forming a highly relevant set closely aligned with the query point. Additionally, a crafted prompt is designed to assign scores to the key factors, converting qualitative insights into quantitative results. The derived scores undergo a scaling process, transforming them into real-world values that are used for prediction. Our experiments demonstrate that LLMs outperform time-series models in market forecasting, though challenges such as imperfect reproducibility and limited explainability remain.


tLaSDI: Thermodynamics-informed latent space dynamics identification

arXiv.org Artificial Intelligence

We propose a latent space dynamics identification method, namely tLaSDI, that embeds the first and second principles of thermodynamics. The latent variables are learned through an autoencoder as a nonlinear dimension reduction model. The latent dynamics are constructed by a neural network-based model that precisely preserves certain structures for the thermodynamic laws through the GENERIC formalism. An abstract error estimate is established, which provides a new loss formulation involving the Jacobian computation of autoencoder. The autoencoder and the latent dynamics are simultaneously trained to minimize the new loss. Computational examples demonstrate the effectiveness of tLaSDI, which exhibits robust generalization ability, even in extrapolation. In addition, an intriguing correlation is empirically observed between a quantity from tLaSDI in the latent space and the behaviors of the full-state solution.


A Comprehensive Review of Latent Space Dynamics Identification Algorithms for Intrusive and Non-Intrusive Reduced-Order-Modeling

arXiv.org Artificial Intelligence

Numerical solvers of partial differential equations (PDEs) have been widely employed for simulating physical systems. However, the computational cost remains a major bottleneck in various scientific and engineering applications, which has motivated the development of reduced-order models (ROMs). Recently, machine-learning-based ROMs have gained significant popularity and are promising for addressing some limitations of traditional ROM methods, especially for advection dominated systems. In this chapter, we focus on a particular framework known as Latent Space Dynamics Identification (LaSDI), which transforms the high-fidelity data, governed by a PDE, to simpler and low-dimensional latent-space data, governed by ordinary differential equations (ODEs). These ODEs can be learned and subsequently interpolated to make ROM predictions. Each building block of LaSDI can be easily modulated depending on the application, which makes the LaSDI framework highly flexible. In particular, we present strategies to enforce the laws of thermodynamics into LaSDI models (tLaSDI), enhance robustness in the presence of noise through the weak form (WLaSDI), select high-fidelity training data efficiently through active learning (gLaSDI, GPLaSDI), and quantify the ROM prediction uncertainty through Gaussian processes (GPLaSDI). We demonstrate the performance of different LaSDI approaches on Burgers equation, a non-linear heat conduction problem, and a plasma physics problem, showing that LaSDI algorithms can achieve relative errors of less than a few percent and up to thousands of times speed-ups.


Data-Driven Autoencoder Numerical Solver with Uncertainty Quantification for Fast Physical Simulations

arXiv.org Artificial Intelligence

Traditional partial differential equation (PDE) solvers can be computationally expensive, which motivates the development of faster methods, such as reduced-order-models (ROMs). We present GPLaSDI, a hybrid deep-learning and Bayesian ROM. GPLaSDI trains an autoencoder on full-order-model (FOM) data and simultaneously learns simpler equations governing the latent space. These equations are interpolated with Gaussian Processes, allowing for uncertainty quantification and active learning, even with limited access to the FOM solver. Our framework is able to achieve up to 100,000 times speed-up and less than 7% relative error on fluid mechanics problems.


Reduced-order modeling for parameterized PDEs via implicit neural representations

arXiv.org Artificial Intelligence

We present a new data-driven reduced-order modeling approach to efficiently solve parametrized partial differential equations (PDEs) for many-query problems. This work is inspired by the concept of implicit neural representation (INR), which models physics signals in a continuous manner and independent of spatial/temporal discretization. The proposed framework encodes PDE and utilizes a parametrized neural ODE (PNODE) to learn latent dynamics characterized by multiple PDE parameters. PNODE can be inferred by a hypernetwork to reduce the potential difficulties in learning PNODE due to a complex multilayer perceptron (MLP). The framework uses an INR to decode the latent dynamics and reconstruct accurate PDE solutions. Further, a physics-informed loss is also introduced to correct the prediction of unseen parameter instances. Incorporating the physics-informed loss also enables the model to be fine-tuned in an unsupervised manner on unseen PDE parameters. A numerical experiment is performed on a two-dimensional Burgers equation with a large variation of PDE parameters. We evaluate the proposed method at a large Reynolds number and obtain up to speedup of O(10^3) and ~1% relative error to the ground truth values.


Weak-Form Latent Space Dynamics Identification

arXiv.org Artificial Intelligence

Recent work in data-driven modeling has demonstrated that a weak formulation of model equations enhances the noise robustness of a wide range of computational methods. In this paper, we demonstrate the power of the weak form to enhance the LaSDI (Latent Space Dynamics Identification) algorithm, a recently developed data-driven reduced order modeling technique. We introduce a weak form-based version WLaSDI (Weak-form Latent Space Dynamics Identification). WLaSDI first compresses data, then projects onto the test functions and learns the local latent space models. Notably, WLaSDI demonstrates significantly enhanced robustness to noise. With WLaSDI, the local latent space is obtained using weak-form equation learning techniques. Compared to the standard sparse identification of nonlinear dynamics (SINDy) used in LaSDI, the variance reduction of the weak form guarantees a robust and precise latent space recovery, hence allowing for a fast, robust, and accurate simulation. We demonstrate the efficacy of WLaSDI vs. LaSDI on several common benchmark examples including viscid and inviscid Burgers', radial advection, and heat conduction. For instance, in the case of 1D inviscid Burgers' simulations with the addition of up to 100% Gaussian white noise, the relative error remains consistently below 6% for WLaSDI, while it can exceed 10,000% for LaSDI. Similarly, for radial advection simulations, the relative errors stay below 15% for WLaSDI, in stark contrast to the potential errors of up to 10,000% with LaSDI. Moreover, speedups of several orders of magnitude can be obtained with WLaSDI. For example applying WLaSDI to 1D Burgers' yields a 140X speedup compared to the corresponding full order model. Python code to reproduce the results in this work is available at (https://github.com/MathBioCU/PyWSINDy_ODE) and (https://github.com/MathBioCU/PyWLaSDI).


GPLaSDI: Gaussian Process-based Interpretable Latent Space Dynamics Identification through Deep Autoencoder

arXiv.org Artificial Intelligence

Numerically solving partial differential equations (PDEs) can be challenging and computationally expensive. This has led to the development of reduced-order models (ROMs) that are accurate but faster than full order models (FOMs). Recently, machine learning advances have enabled the creation of non-linear projection methods, such as Latent Space Dynamics Identification (LaSDI). LaSDI maps full-order PDE solutions to a latent space using autoencoders and learns the system of ODEs governing the latent space dynamics. By interpolating and solving the ODE system in the reduced latent space, fast and accurate ROM predictions can be made by feeding the predicted latent space dynamics into the decoder. In this paper, we introduce GPLaSDI, a novel LaSDI-based framework that relies on Gaussian process (GP) for latent space ODE interpolations. Using GPs offers two significant advantages. First, it enables the quantification of uncertainty over the ROM predictions. Second, leveraging this prediction uncertainty allows for efficient adaptive training through a greedy selection of additional training data points. This approach does not require prior knowledge of the underlying PDEs. Consequently, GPLaSDI is inherently non-intrusive and can be applied to problems without a known PDE or its residual. We demonstrate the effectiveness of our approach on the Burgers equation, Vlasov equation for plasma physics, and a rising thermal bubble problem. Our proposed method achieves between 200 and 100,000 times speed-up, with up to 7% relative error.


gLaSDI: Parametric Physics-informed Greedy Latent Space Dynamics Identification

arXiv.org Artificial Intelligence

A parametric adaptive physics-informed greedy Latent Space Dynamics Identification (gLaSDI) method is proposed for accurate, efficient, and robust data-driven reduced-order modeling of high-dimensional nonlinear dynamical systems. In the proposed gLaSDI framework, an autoencoder discovers intrinsic nonlinear latent representations of high-dimensional data, while dynamics identification (DI) models capture local latent-space dynamics. An interactive training algorithm is adopted for the autoencoder and local DI models, which enables identification of simple latent-space dynamics and enhances accuracy and efficiency of data-driven reduced-order modeling. To maximize and accelerate the exploration of the parameter space for the optimal model performance, an adaptive greedy sampling algorithm integrated with a physics-informed residual-based error indicator and random-subset evaluation is introduced to search for the optimal training samples on the fly. Further, to exploit local latent-space dynamics captured by the local DI models for an improved modeling accuracy with a minimum number of local DI models in the parameter space, a k-nearest neighbor convex interpolation scheme is employed. The effectiveness of the proposed framework is demonstrated by modeling various nonlinear dynamical problems, including Burgers equations, nonlinear heat conduction, and radial advection. The proposed adaptive greedy sampling outperforms the conventional predefined uniform sampling in terms of accuracy. Compared with the high-fidelity models, gLaSDI achieves 17 to 2,658x speed-up with 1 to 5% relative errors.