Goto

Collaborating Authors

 Choi, Jun Won


Fine-Grained Pillar Feature Encoding Via Spatio-Temporal Virtual Grid for 3D Object Detection

arXiv.org Artificial Intelligence

Developing high-performance, real-time architectures for LiDAR-based 3D object detectors is essential for the successful commercialization of autonomous vehicles. Pillar-based methods stand out as a practical choice for onboard deployment due to their computational efficiency. However, despite their efficiency, these methods can sometimes underperform compared to alternative point encoding techniques such as Voxel-encoding or PointNet++. We argue that current pillar-based methods have not sufficiently captured the fine-grained distributions of LiDAR points within each pillar structure. Consequently, there exists considerable room for improvement in pillar feature encoding. In this paper, we introduce a novel pillar encoding architecture referred to as Fine-Grained Pillar Feature Encoding (FG-PFE). FG-PFE utilizes Spatio-Temporal Virtual (STV) grids to capture the distribution of point clouds within each pillar across vertical, temporal, and horizontal dimensions. Through STV grids, points within each pillar are individually encoded using Vertical PFE (V-PFE), Temporal PFE (T-PFE), and Horizontal PFE (H-PFE). These encoded features are then aggregated through an Attentive Pillar Aggregation method. Our experiments conducted on the nuScenes dataset demonstrate that FG-PFE achieves significant performance improvements over baseline models such as PointPillar, CenterPoint-Pillar, and PillarNet, with only a minor increase in computational overhead.


CRN: Camera Radar Net for Accurate, Robust, Efficient 3D Perception

arXiv.org Artificial Intelligence

Autonomous driving requires an accurate and fast 3D perception system that includes 3D object detection, tracking, and segmentation. Although recent low-cost camera-based approaches have shown promising results, they are susceptible to poor illumination or bad weather conditions and have a large localization error. Hence, fusing camera with low-cost radar, which provides precise long-range measurement and operates reliably in all environments, is promising but has not yet been thoroughly investigated. In this paper, we propose Camera Radar Net (CRN), a novel camera-radar fusion framework that generates a semantically rich and spatially accurate bird's-eye-view (BEV) feature map for various tasks. To overcome the lack of spatial information in an image, we transform perspective view image features to BEV with the help of sparse but accurate radar points. We further aggregate image and radar feature maps in BEV using multi-modal deformable attention designed to tackle the spatial misalignment between inputs. CRN with real-time setting operates at 20 FPS while achieving comparable performance to LiDAR detectors on nuScenes, and even outperforms at a far distance on 100m setting. Moreover, CRN with offline setting yields 62.4% NDS, 57.5% mAP on nuScenes test set and ranks first among all camera and camera-radar 3D object detectors.


Deep Learning-based Beam Tracking for Millimeter-wave Communications under Mobility

arXiv.org Artificial Intelligence

In this paper, we propose a deep learning-based beam tracking method for millimeter-wave (mmWave)communications. Beam tracking is employed for transmitting the known symbols using the sounding beams and tracking time-varying channels to maintain a reliable communication link. When the pose of a user equipment (UE) device varies rapidly, the mmWave channels also tend to vary fast, which hinders seamless communication. Thus, models that can capture temporal behavior of mmWave channels caused by the motion of the device are required, to cope with this problem. Accordingly, we employa deep neural network to analyze the temporal structure and patterns underlying in the time-varying channels and the signals acquired by inertial sensors. We propose a model based on long short termmemory (LSTM) that predicts the distribution of the future channel behavior based on a sequence of input signals available at the UE. This channel distribution is used to 1) control the sounding beams adaptively for the future channel state and 2) update the channel estimate through the measurement update step under a sequential Bayesian estimation framework. Our experimental results demonstrate that the proposed method achieves a significant performance gain over the conventional beam tracking methods under various mobility scenarios.


CRAFT: Camera-Radar 3D Object Detection with Spatio-Contextual Fusion Transformer

arXiv.org Artificial Intelligence

Camera and radar sensors have significant advantages in cost, reliability, and maintenance compared to LiDAR. Existing fusion methods often fuse the outputs of single modalities at the result-level, called the late fusion strategy. This can benefit from using off-the-shelf single sensor detection algorithms, but late fusion cannot fully exploit the complementary properties of sensors, thus having limited performance despite the huge potential of camera-radar fusion. Here we propose a novel proposal-level early fusion approach that effectively exploits both spatial and contextual properties of camera and radar for 3D object detection. Our fusion framework first associates image proposal with radar points in the polar coordinate system to efficiently handle the discrepancy between the coordinate system and spatial properties. Using this as a first stage, following consecutive cross-attention based feature fusion layers adaptively exchange spatio-contextual information between camera and radar, leading to a robust and attentive fusion. Our camera-radar fusion approach achieves the state-of-the-art 41.1% mAP and 52.3% NDS on the nuScenes test set, which is 8.7 and 10.8 points higher than the camera-only baseline, as well as yielding competitive performance on the LiDAR method.


DBN-Mix: Training Dual Branch Network Using Bilateral Mixup Augmentation for Long-Tailed Visual Recognition

arXiv.org Artificial Intelligence

There is growing interest in the challenging visual perception task of learning from long-tailed class distributions. The extreme class imbalance in the training dataset biases the model to prefer recognizing majority class data over minority class data. Furthermore, the lack of diversity in minority class samples makes it difficult to find a good representation. In this paper, we propose an effective data augmentation method, referred to as bilateral mixup augmentation, which can improve the performance of long-tailed visual recognition. The bilateral mixup augmentation combines two samples generated by a uniform sampler and a re-balanced sampler and augments the training dataset to enhance the representation learning for minority classes. We also reduce the classifier bias using class-wise temperature scaling, which scales the logits differently per class in the training phase. We apply both ideas to the dual-branch network (DBN) framework, presenting a new model, named dual-branch network with bilateral mixup (DBN-Mix). Experiments on popular long-tailed visual recognition datasets show that DBN-Mix improves performance significantly over baseline and that the proposed method achieves state-of-the-art performance in some categories of benchmarks.