Cho, Jaemin
DataEnvGym: Data Generation Agents in Teacher Environments with Student Feedback
Khan, Zaid, Stengel-Eskin, Elias, Cho, Jaemin, Bansal, Mohit
The process of creating training data to teach models is currently driven by humans, who manually analyze model weaknesses and plan how to create data that improves a student model. Approaches using LLMs as annotators reduce human effort, but still require humans to interpret feedback from evaluations and control the LLM to produce data the student needs. Automating this labor-intensive process by creating autonomous data generation agents - or teachers - is desirable, but requires environments that can simulate the feedback-driven, iterative, closed loop of data creation. To enable rapid, scalable testing for such agents and their modules, we introduce DataEnvGym, a testbed of teacher environments for data generation agents. DataEnvGym frames data generation as a sequential decision-making task, involving an agent consisting of a data generation policy (which generates a plan for creating training data) and a data generation engine (which transforms the plan into data), inside an environment that provides student feedback. The agent's goal is to improve student performance. Students are iteratively trained and evaluated on generated data, and their feedback (in the form of errors or weak skills) is reported to the agent after each iteration. DataEnvGym includes multiple teacher environment instantiations across 3 levels of structure in the state representation and action space. More structured environments are based on inferred skills and offer more interpretability and curriculum control. We support 4 domains (math, code, VQA, and tool-use) and test multiple students and teachers. Example agents in our teaching environments can iteratively improve students across tasks and settings. Moreover, we show that environments teach different skill levels and test variants of key modules, pointing to future work in improving data generation agents, engines, and feedback mechanisms.
VideoRepair: Improving Text-to-Video Generation via Misalignment Evaluation and Localized Refinement
Lee, Daeun, Yoon, Jaehong, Cho, Jaemin, Bansal, Mohit
Recent text-to-video (T2V) diffusion models have demonstrated impressive generation capabilities across various domains. However, these models often generate videos that have misalignments with text prompts, especially when the prompts describe complex scenes with multiple objects and attributes. To address this, we introduce VideoRepair, a novel model-agnostic, training-free video refinement framework that automatically identifies fine-grained text-video misalignments and generates explicit spatial and textual feedback, enabling a T2V diffusion model to perform targeted, localized refinements. VideoRepair consists of four stages: In (1) video evaluation, we detect misalignments by generating fine-grained evaluation questions and answering those questions with MLLM. In (2) refinement planning, we identify accurately generated objects and then create localized prompts to refine other areas in the video. Next, in (3) region decomposition, we segment the correctly generated area using a combined grounding module. We regenerate the video by adjusting the misaligned regions while preserving the correct regions in (4) localized refinement. On two popular video generation benchmarks (EvalCrafter and T2V-CompBench), VideoRepair substantially outperforms recent baselines across various text-video alignment metrics. We provide a comprehensive analysis of VideoRepair components and qualitative examples.
M3DocRAG: Multi-modal Retrieval is What You Need for Multi-page Multi-document Understanding
Cho, Jaemin, Mahata, Debanjan, Irsoy, Ozan, He, Yujie, Bansal, Mohit
Document visual question answering (DocVQA) pipelines that answer questions from documents have broad applications. Existing methods focus on handling single-page documents with multi-modal language models (MLMs), or rely on text-based retrieval-augmented generation (RAG) that uses text extraction tools such as optical character recognition (OCR). However, there are difficulties in applying these methods in real-world scenarios: (a) questions often require information across different pages or documents, where MLMs cannot handle many long documents; (b) documents often have important information in visual elements such as figures, but text extraction tools ignore them. We introduce M3DocRAG, a novel multi-modal RAG framework that flexibly accommodates various document contexts (closed-domain and open-domain), question hops (single-hop and multi-hop), and evidence modalities (text, chart, figure, etc.). M3DocRAG finds relevant documents and answers questions using a multi-modal retriever and an MLM, so that it can efficiently handle single or many documents while preserving visual information. Since previous DocVQA datasets ask questions in the context of a specific document, we also present M3DocVQA, a new benchmark for evaluating open-domain DocVQA over 3,000+ PDF documents with 40,000+ pages. In three benchmarks (M3DocVQA/MMLongBench-Doc/MP-DocVQA), empirical results show that M3DocRAG with ColPali and Qwen2-VL 7B achieves superior performance than many strong baselines, including state-of-the-art performance in MP-DocVQA. We provide comprehensive analyses of different indexing, MLMs, and retrieval models. Lastly, we qualitatively show that M3DocRAG can successfully handle various scenarios, such as when relevant information exists across multiple pages and when answer evidence only exists in images.
EnvGen: Generating and Adapting Environments via LLMs for Training Embodied Agents
Zala, Abhay, Cho, Jaemin, Lin, Han, Yoon, Jaehong, Bansal, Mohit
Recent SOTA approaches for embodied learning via interaction directly employ large language models (LLMs) as agents to determine the next steps in an environment. Due to their world knowledge and reasoning capabilities, LLM agents achieve stronger performance than previous smaller agents based on reinforcement learning (RL); however, frequently calling LLMs is slow and expensive. Instead of directly employing LLMs as agents, can we use LLMs' reasoning capabilities to adaptively create training environments to help smaller RL agents learn useful skills that they are weak at? We propose EnvGen, a novel framework to address this question. We first prompt an LLM to generate training environments by giving it the task description and simulator objectives that the agents should learn and then asking it to generate a set of environment configurations (e.g., different terrains, items initially given to agents, etc.). Next, we train a small RL agent in a mixture of the original and LLM-generated environments. Then, we enable the LLM to continuously adapt the generated environments to progressively improve the skills that the agent is weak at, by providing feedback to the LLM in the form of the agent's performance. We demonstrate the usefulness of EnvGen with comprehensive experiments in Crafter and Heist environments. We find that a small RL agent trained with EnvGen can outperform SOTA methods, including a GPT-4 agent, and learns long-horizon tasks significantly faster. We also show that using an LLM to adapt environments dynamically outperforms curriculum learning approaches and how the environments are adapted to help improve RL agents' weaker skills over time. Additionally, EnvGen is substantially more efficient as it only uses a small number of LLM calls (e.g., 4 in total), whereas LLM agents require thousands of calls. Lastly, we present detailed ablation studies for EnvGen design choices.
Ctrl-Adapter: An Efficient and Versatile Framework for Adapting Diverse Controls to Any Diffusion Model
Lin, Han, Cho, Jaemin, Zala, Abhay, Bansal, Mohit
ControlNets are widely used for adding spatial control to text-to-image diffusion models with different conditions, such as depth maps, scribbles/sketches, and human poses. However, when it comes to controllable video generation, ControlNets cannot be directly integrated into new backbones due to feature space mismatches, and training ControlNets for new backbones can be a significant burden for many users. Furthermore, applying ControlNets independently to different frames cannot effectively maintain object temporal consistency. To address these challenges, we introduce Ctrl-Adapter, an efficient and versatile framework that adds diverse controls to any image/video diffusion model through the adaptation of pretrained ControlNets. Ctrl-Adapter offers strong and diverse capabilities, including image and video control, sparse-frame video control, fine-grained patch-level multi-condition control (via an MoE router), zero-shot adaptation to unseen conditions, and supports a variety of downstream tasks beyond spatial control, including video editing, video style transfer, and text-guided motion control. With six diverse U-Net/DiT-based image/video diffusion models (SDXL, PixArt-$\alpha$, I2VGen-XL, SVD, Latte, Hotshot-XL), Ctrl-Adapter matches the performance of pretrained ControlNets on COCO and achieves the state-of-the-art on DAVIS 2017 with significantly lower computation (< 10 GPU hours).
DOCCI: Descriptions of Connected and Contrasting Images
Onoe, Yasumasa, Rane, Sunayana, Berger, Zachary, Bitton, Yonatan, Cho, Jaemin, Garg, Roopal, Ku, Alexander, Parekh, Zarana, Pont-Tuset, Jordi, Tanzer, Garrett, Wang, Su, Baldridge, Jason
Vision-language datasets are vital for both text-to-image (T2I) and image-to-text (I2T) research. However, current datasets lack descriptions with fine-grained detail that would allow for richer associations to be learned by models. To fill the gap, we introduce Descriptions of Connected and Contrasting Images (DOCCI), a dataset with long, human-annotated English descriptions for 15k images that were taken, curated and donated by a single researcher intent on capturing key challenges such as spatial relations, counting, text rendering, world knowledge, and more. We instruct human annotators to create comprehensive descriptions for each image; these average 136 words in length and are crafted to clearly distinguish each image from those that are related or similar. Each description is highly compositional and typically encompasses multiple challenges. Through both quantitative and qualitative analyses, we demonstrate that DOCCI serves as an effective training resource for image-to-text generation -- a PaLI 5B model finetuned on DOCCI shows equal or superior results compared to highly-performant larger models like LLaVA-1.5 7B and InstructBLIP 7B. Furthermore, we show that DOCCI is a useful testbed for text-to-image generation, highlighting the limitations of current text-to-image models in capturing long descriptions and fine details.
SELMA: Learning and Merging Skill-Specific Text-to-Image Experts with Auto-Generated Data
Li, Jialu, Cho, Jaemin, Sung, Yi-Lin, Yoon, Jaehong, Bansal, Mohit
Recent text-to-image (T2I) generation models have demonstrated impressive capabilities in creating images from text descriptions. However, these T2I generation models often fall short of generating images that precisely match the details of the text inputs, such as incorrect spatial relationship or missing objects. In this paper, we introduce SELMA: Skill-Specific Expert Learning and Merging with Auto-Generated Data, a novel paradigm to improve the faithfulness of T2I models by fine-tuning models on automatically generated, multi-skill image-text datasets, with skill-specific expert learning and merging. First, SELMA leverages an LLM's in-context learning capability to generate multiple datasets of text prompts that can teach different skills, and then generates the images with a T2I model based on the prompts. Next, SELMA adapts the T2I model to the new skills by learning multiple single-skill LoRA (low-rank adaptation) experts followed by expert merging. Our independent expert fine-tuning specializes multiple models for different skills, and expert merging helps build a joint multi-skill T2I model that can generate faithful images given diverse text prompts, while mitigating the knowledge conflict from different datasets. We empirically demonstrate that SELMA significantly improves the semantic alignment and text faithfulness of state-of-the-art T2I diffusion models on multiple benchmarks (+2.1% on TIFA and +6.9% on DSG), human preference metrics (PickScore, ImageReward, and HPS), as well as human evaluation. Moreover, fine-tuning with image-text pairs auto-collected via SELMA shows comparable performance to fine-tuning with ground truth data. Lastly, we show that fine-tuning with images from a weaker T2I model can help improve the generation quality of a stronger T2I model, suggesting promising weak-to-strong generalization in T2I models.
Contrastive Region Guidance: Improving Grounding in Vision-Language Models without Training
Wan, David, Cho, Jaemin, Stengel-Eskin, Elias, Bansal, Mohit
Highlighting particularly relevant regions of an image can improve the performance of vision-language models (VLMs) on various vision-language (VL) tasks by guiding the model to attend more closely to these regions of interest. For example, VLMs can be given a "visual prompt", where visual markers such as bounding boxes delineate key image regions. However, current VLMs that can incorporate visual guidance are either proprietary and expensive or require costly training on curated data that includes visual prompts. We introduce Contrastive Region Guidance (CRG), a training-free guidance method that enables open-source VLMs to respond to visual prompts. CRG contrasts model outputs produced with and without visual prompts, factoring out biases revealed by the model when answering without the information required to produce a correct answer (i.e., the model's prior). CRG achieves substantial improvements in a wide variety of VL tasks: When region annotations are provided, CRG increases absolute accuracy by up to 11.1% on ViP-Bench, a collection of six diverse region-based tasks such as recognition, math, and object relationship reasoning. We also show CRG's applicability to spatial reasoning, with 10% improvement on What'sUp, as well as to compositional generalization -- improving accuracy by 11.5% and 7.5% on two challenging splits from SugarCrepe -- and to image-text alignment for generated images, where we improve by up to 8.4 AUROC and 6.8 F1 points on SeeTRUE. When reference regions are absent, CRG allows us to re-rank proposed regions in referring expression comprehension and phrase grounding benchmarks like RefCOCO/+/g and Flickr30K Entities, with an average gain of 3.2% in accuracy. Our analysis explores alternative masking strategies for CRG, quantifies CRG's probability shift, and evaluates the role of region guidance strength, empirically validating CRG's design choices.
Self-Chained Image-Language Model for Video Localization and Question Answering
Yu, Shoubin, Cho, Jaemin, Yadav, Prateek, Bansal, Mohit
Recent studies have shown promising results on utilizing large pre-trained image-language models for video question answering. While these image-language models can efficiently bootstrap the representation learning of video-language models, they typically concatenate uniformly sampled video frames as visual inputs without explicit language-aware, temporal modeling. When only a portion of a video input is relevant to the language query, such uniform frame sampling can often lead to missing important visual cues. Although humans often find a video moment to focus on and rewind the moment to answer questions, training a query-aware video moment localizer often requires expensive annotations and high computational costs. To address this issue, we propose Self-Chained Video Localization-Answering (SeViLA), a novel framework that leverages a single image-language model (BLIP-2) to tackle both temporal keyframe localization and QA on videos. SeViLA framework consists of two modules: Localizer and Answerer, where both are parameter-efficiently fine-tuned from BLIP-2. We propose two ways of chaining these modules for cascaded inference and self-refinement. First, in the forward chain, the Localizer finds multiple language-aware keyframes in a video, which the Answerer uses to predict the answer. Second, in the reverse chain, the Answerer generates keyframe pseudo-labels to refine the Localizer, alleviating the need for expensive video moment localization annotations. Our SeViLA framework outperforms several strong baselines on 5 challenging video QA and event prediction benchmarks, and achieves the state-of-the-art in both fine-tuning (NExT-QA, STAR) and zero-shot (NExT-QA, STAR, How2QA, VLEP) settings. We also analyze the impact of Localizer, comparisons of Localizer with other temporal localization models, pre-training/self-refinement of Localizer, and varying the number of keyframes.
Davidsonian Scene Graph: Improving Reliability in Fine-grained Evaluation for Text-to-Image Generation
Cho, Jaemin, Hu, Yushi, Garg, Roopal, Anderson, Peter, Krishna, Ranjay, Baldridge, Jason, Bansal, Mohit, Pont-Tuset, Jordi, Wang, Su
Evaluating text-to-image models is notoriously difficult. A strong recent approach for assessing text-image faithfulness is based on QG/A (question generation and answering), which uses pre-trained foundational models to automatically generate a set of questions and answers from the prompt, and output images are scored based on whether these answers extracted with a visual question answering model are consistent with the prompt-based answers. This kind of evaluation is naturally dependent on the quality of the underlying QG and QA models. We identify and address several reliability challenges in existing QG/A work: (a) QG questions should respect the prompt (avoiding hallucinations, duplications, and omissions) and (b) VQA answers should be consistent (not asserting that there is no motorcycle in an image while also claiming the motorcycle is blue). We address these issues with Davidsonian Scene Graph (DSG), an empirically grounded evaluation framework inspired by formal semantics. DSG is an automatic, graph-based QG/A that is modularly implemented to be adaptable to any QG/A module. DSG produces atomic and unique questions organized in dependency graphs, which (i) ensure appropriate semantic coverage and (ii) sidestep inconsistent answers. With extensive experimentation and human evaluation on a range of model configurations (LLM, VQA, and T2I), we empirically demonstrate that DSG addresses the challenges noted above. Finally, we present DSG-1k, an open-sourced evaluation benchmark that includes 1,060 prompts, covering a wide range of fine-grained semantic categories with a balanced distribution. We release the DSG-1k prompts and the corresponding DSG questions.