Goto

Collaborating Authors

 Chiang, David


Using Source-Side Confidence Estimation for Reliable Translation into Unfamiliar Languages

arXiv.org Artificial Intelligence

We present an interactive machine translation (MT) system designed for users who are not proficient in the target language. It aims to improve trustworthiness and explainability by identifying potentially mistranslated words and allowing the user to intervene to correct mistranslations. However, confidence estimation in machine translation has traditionally focused on the target side. Whereas the conventional approach to source-side confidence estimation would have been to project target word probabilities to the source side via word alignments, we propose a direct, alignment-free approach that measures how sensitive the target word probabilities are to changes in the source embeddings. Experimental results show that our method outperforms traditional alignment-based methods at detection of mistranslations.


Transformers in Uniform TC$^0$

arXiv.org Artificial Intelligence

Previous work has shown that the languages recognized by average-hard attention transformers (AHATs) and softmax-attention transformers (SMATs) are within the circuit complexity class TC$^0$. However, these results assume limited-precision arithmetic: using floating-point numbers with O(log n) bits (where n is the length of the input string), Strobl showed that AHATs can be approximated in L-uniform TC$^0$, and Merrill and Sabharwal showed that SMATs can be approximated in DLOGTIME-uniform TC$^0$. Here, we improve these results, showing that AHATs with no approximation, SMATs with O(poly(n)) bits of floating-point precision, and SMATs with at most $2^{-O(poly(n))}$ absolute error are all in DLOGTIME-uniform TC$^0$.


Simulating Hard Attention Using Soft Attention

arXiv.org Artificial Intelligence

We study conditions under which transformers using soft attention can simulate hard attention, that is, effectively focus all attention on a subset of positions. First, we examine several variants of linear temporal logic, whose formulas have been previously been shown to be computable using hard attention transformers. We demonstrate how soft attention transformers can compute formulas of these logics using unbounded positional embeddings or temperature scaling. Second, we demonstrate how temperature scaling allows softmax transformers to simulate a large subclass of average-hard attention transformers, those that have what we call the uniform-tieless property.


DIALECTBENCH: A NLP Benchmark for Dialects, Varieties, and Closely-Related Languages

arXiv.org Artificial Intelligence

Language technologies should be judged on their usefulness in real-world use cases. An often overlooked aspect in natural language processing (NLP) research and evaluation is language variation in the form of non-standard dialects or language varieties (hereafter, varieties). Most NLP benchmarks are limited to standard language varieties. To fill this gap, we propose DIALECTBENCH, the first-ever large-scale benchmark for NLP on varieties, which aggregates an extensive set of task-varied variety datasets (10 text-level tasks covering 281 varieties). This allows for a comprehensive evaluation of NLP system performance on different language varieties. We provide substantial evidence of performance disparities between standard and non-standard language varieties, and we also identify language clusters with large performance divergence across tasks. We believe DIALECTBENCH provides a comprehensive view of the current state of NLP for language varieties and one step towards advancing it further. Code/data: https://github.com/ffaisal93/DialectBench


We're Calling an Intervention: Exploring the Fundamental Hurdles in Adapting Language Models to Nonstandard Text

arXiv.org Artificial Intelligence

We present a suite of experiments that allow us to understand the underlying challenges of language model adaptation to nonstandard text. We do so by designing interventions that approximate several types of linguistic variation and their interactions with existing biases of language models. Applying our interventions during language model adaptation with varying size and nature of training data, we gain important insights into when knowledge transfer can be successful, as well as the aspects of linguistic variation that are particularly difficult for language models to deal with. For instance, on text with character-level variation, performance improves with even a few training examples but approaches a plateau, suggesting that more data is not the solution. In contrast, on text with variation involving new words or meanings, far more data is needed, but it leads to a massive breakthrough in performance. Our findings reveal that existing models lack the necessary infrastructure to handle diverse forms of nonstandard text and linguistic variation, guiding the development of more resilient language modeling techniques for the future. We make the code for our interventions, which can be applied to any English text data, publicly available.


Language Complexity and Speech Recognition Accuracy: Orthographic Complexity Hurts, Phonological Complexity Doesn't

arXiv.org Artificial Intelligence

We investigate what linguistic factors affect the performance of Automatic Speech Recognition (ASR) models. We hypothesize that orthographic and phonological complexities both degrade accuracy. To examine this, we fine-tune the multilingual self-supervised pretrained model Wav2Vec2-XLSR-53 on 25 languages with 15 writing systems, and we compare their ASR accuracy, number of graphemes, unigram grapheme entropy, logographicity (how much word/morpheme-level information is encoded in the writing system), and number of phonemes. The results demonstrate that orthographic complexities significantly correlate with low ASR accuracy, while phonological complexity shows no significant correlation.


PILA: A Historical-Linguistic Dataset of Proto-Italic and Latin

arXiv.org Artificial Intelligence

Computational historical linguistics seeks to systematically understand processes of sound change, including during periods at which little to no formal recording of language is attested. At the same time, few computational resources exist which deeply explore phonological and morphological connections between proto-languages and their descendants. This is particularly true for the family of Italic languages. To assist historical linguists in the study of Italic sound change, we introduce the Proto-Italic to Latin (PILA) dataset, which consists of roughly 3,000 pairs of forms from Proto-Italic and Latin. We provide a detailed description of how our dataset was created and organized. Then, we exhibit PILA's value in two ways. First, we present baseline results for PILA on a pair of traditional computational historical linguistics tasks. Second, we demonstrate PILA's capability for enhancing other historical-linguistic datasets through a dataset compatibility study.


Killkan: The Automatic Speech Recognition Dataset for Kichwa with Morphosyntactic Information

arXiv.org Artificial Intelligence

This paper presents Killkan, the first dataset for automatic speech recognition (ASR) in the Kichwa language, an indigenous language of Ecuador. Kichwa is an extremely low-resource endangered language, and there have been no resources before Killkan for Kichwa to be incorporated in applications of natural language processing. The dataset contains approximately 4 hours of audio with transcription, translation into Spanish, and morphosyntactic annotation in the format of Universal Dependencies. The audio data was retrieved from a publicly available radio program in Kichwa. This paper also provides corpus-linguistic analyses of the dataset with a special focus on the agglutinative morphology of Kichwa and frequent code-switching with Spanish. The experiments show that the dataset makes it possible to develop the first ASR system for Kichwa with reliable quality despite its small dataset size. This dataset, the ASR model, and the code used to develop them will be publicly available.


Nostra Domina at EvaLatin 2024: Improving Latin Polarity Detection through Data Augmentation

arXiv.org Artificial Intelligence

This paper describes submissions from the team Nostra Domina to the EvaLatin 2024 shared task of emotion polarity detection. Given the low-resource environment of Latin and the complexity of sentiment in rhetorical genres like poetry, we augmented the available data through automatic polarity annotation. We present two methods for doing so on the basis of the $k$-means algorithm, and we employ a variety of Latin large language models (LLMs) in a neural architecture to better capture the underlying contextual sentiment representations. Our best approach achieved the second highest macro-averaged Macro-$F_1$ score on the shared task's test set.


Counting Like Transformers: Compiling Temporal Counting Logic Into Softmax Transformers

arXiv.org Artificial Intelligence

Deriving formal bounds on the expressivity of transformers, as well as studying transformers that are constructed to implement known algorithms, are both effective methods for better understanding the computational power of transformers. Towards both ends, we introduce the temporal counting logic $\textbf{K}_\text{t}$[#] alongside the RASP variant $\textbf{C-RASP}$. We show they are equivalent to each other, and that together they are the best-known lower bound on the formal expressivity of future-masked soft attention transformers with unbounded input size. We prove this by showing all $\textbf{K}_\text{t}$[#] formulas can be compiled into these transformers. As a case study, we demonstrate on paper how to use $\textbf{C-RASP}$ to construct simple transformer language models that, using greedy decoding, can only generate sentences that have given properties formally specified in $\textbf{K}_\text{t}$[#].