Goto

Collaborating Authors

 Cheung, Yiu-ming


Classifying Long-tailed and Label-noise Data via Disentangling and Unlearning

arXiv.org Artificial Intelligence

In real-world datasets, the challenges of long-tailed distributions and noisy labels often coexist, posing obstacles to the model training and performance. Existing studies on long-tailed noisy label learning (LTNLL) typically assume that the generation of noisy labels is independent of the long-tailed distribution, which may not be true from a practical perspective. In real-world situaiton, we observe that the tail class samples are more likely to be mislabeled as head, exacerbating the original degree of imbalance. We call this phenomenon as ``tail-to-head (T2H)'' noise. T2H noise severely degrades model performance by polluting the head classes and forcing the model to learn the tail samples as head. To address this challenge, we investigate the dynamic misleading process of the nosiy labels and propose a novel method called Disentangling and Unlearning for Long-tailed and Label-noisy data (DULL). It first employs the Inner-Feature Disentangling (IFD) to disentangle feature internally. Based on this, the Inner-Feature Partial Unlearning (IFPU) is then applied to weaken and unlearn incorrect feature regions correlated to wrong classes. This method prevents the model from being misled by noisy labels, enhancing the model's robustness against noise. To provide a controlled experimental environment, we further propose a new noise addition algorithm to simulate T2H noise. Extensive experiments on both simulated and real-world datasets demonstrate the effectiveness of our proposed method.


Iterative Prompt Relocation for Distribution-Adaptive Visual Prompt Tuning

arXiv.org Artificial Intelligence

Visual prompt tuning (VPT) provides an efficient and effective solution for adapting pre-trained models to various downstream tasks by incorporating learnable prompts. However, most prior art indiscriminately applies a fixed prompt distribution across different tasks, neglecting the importance of each block differing depending on the task. In this paper, we investigate adaptive distribution optimization (ADO) by addressing two key questions: (1) How to appropriately and formally define ADO, and (2) How to design an adaptive distribution strategy guided by this definition? Through in-depth analysis, we provide an affirmative answer that properly adjusting the distribution significantly improves VPT performance, and further uncover a key insight that a nested relationship exists between ADO and VPT. Based on these findings, we propose a new VPT framework, termed PRO-VPT (iterative Prompt RelOcation-based VPT), which adaptively adjusts the distribution building upon a nested optimization formulation. Specifically, we develop a prompt relocation strategy for ADO derived from this formulation, comprising two optimization steps: identifying and pruning idle prompts, followed by determining the optimal blocks for their relocation. By iteratively performing prompt relocation and VPT, our proposal adaptively learns the optimal prompt distribution, thereby unlocking the full potential of VPT. Extensive experiments demonstrate that our proposal significantly outperforms state-of-the-art VPT methods, e.g., PRO-VPT surpasses VPT by 1.6% average accuracy, leading prompt-based methods to state-of-the-art performance on the VTAB-1k benchmark. The code is available at https://github.com/ckshang/PRO-VPT.


Asynchronous Federated Clustering with Unknown Number of Clusters

arXiv.org Artificial Intelligence

Federated Clustering (FC) is crucial to mining knowledge from unlabeled non-Independent Identically Distributed (non-IID) data provided by multiple clients while preserving their privacy. Most existing attempts learn cluster distributions at local clients, and then securely pass the desensitized information to the server for aggregation. However, some tricky but common FC problems are still relatively unexplored, including the heterogeneity in terms of clients' communication capacity and the unknown number of proper clusters $k^*$. To further bridge the gap between FC and real application scenarios, this paper first shows that the clients' communication asynchrony and unknown $k^*$ are complex coupling problems, and then proposes an Asynchronous Federated Cluster Learning (AFCL) method accordingly. It spreads the excessive number of seed points to the clients as a learning medium and coordinates them across the clients to form a consensus. To alleviate the distribution imbalance cumulated due to the unforeseen asynchronous uploading from the heterogeneous clients, we also design a balancing mechanism for seeds updating. As a result, the seeds gradually adapt to each other to reveal a proper number of clusters. Extensive experiments demonstrate the efficacy of AFCL.


Implementing Trust in Non-Small Cell Lung Cancer Diagnosis with a Conformalized Uncertainty-Aware AI Framework in Whole-Slide Images

arXiv.org Artificial Intelligence

Ensuring trustworthiness is fundamental to the development of artificial intelligence (AI) that is considered societally responsible, particularly in cancer diagnostics, where a misdiagnosis can have dire consequences. Current digital pathology AI models lack systematic solutions to address trustworthiness concerns arising from model limitations and data discrepancies between model deployment and development environments. To address this issue, we developed TRUECAM, a framework designed to ensure both data and model trustworthiness in non-small cell lung cancer subtyping with whole-slide images. TRUECAM integrates 1) a spectral-normalized neural Gaussian process for identifying out-of-scope inputs and 2) an ambiguity-guided elimination of tiles to filter out highly ambiguous regions, addressing data trustworthiness, as well as 3) conformal prediction to ensure controlled error rates. We systematically evaluated the framework across multiple large-scale cancer datasets, leveraging both task-specific and foundation models, illustrate that an AI model wrapped with TRUECAM significantly outperforms models that lack such guidance, in terms of classification accuracy, robustness, interpretability, and data efficiency, while also achieving improvements in fairness.


GBRIP: Granular Ball Representation for Imbalanced Partial Label Learning

arXiv.org Artificial Intelligence

Partial label learning (PLL) is a complicated weakly supervised multi-classification task compounded by class imbalance. Currently, existing methods only rely on inter-class pseudo-labeling from inter-class features, often overlooking the significant impact of the intra-class imbalanced features combined with the inter-class. To address these limitations, we introduce Granular Ball Representation for Imbalanced PLL (GBRIP), a novel framework for imbalanced PLL. GBRIP utilizes coarse-grained granular ball representation and multi-center loss to construct a granular ball-based nfeature space through unsupervised learning, effectively capturing the feature distribution within each class. GBRIP mitigates the impact of confusing features by systematically refining label disambiguation and estimating imbalance distributions. The novel multi-center loss function enhances learning by emphasizing the relationships between samples and their respective centers within the granular balls. Extensive experiments on standard benchmarks demonstrate that GBRIP outperforms existing state-of-the-art methods, offering a robust solution to the challenges of imbalanced PLL.


Detecting Discrepancies Between AI-Generated and Natural Images Using Uncertainty

arXiv.org Artificial Intelligence

In this work, we propose a novel approach for detecting AI-generated images by leveraging predictive uncertainty to mitigate misuse and associated risks. The motivation arises from the fundamental assumption regarding the distributional discrepancy between natural and AI-generated images. The feasibility of distinguishing natural images from AI-generated ones is grounded in the distribution discrepancy between them. Predictive uncertainty offers an effective approach for capturing distribution shifts, thereby providing insights into detecting AI-generated images. Namely, as the distribution shift between training and testing data increases, model performance typically degrades, often accompanied by increased predictive uncertainty. Therefore, we propose to employ predictive uncertainty to reflect the discrepancies between AI-generated and natural images. In this context, the challenge lies in ensuring that the model has been trained over sufficient natural images to avoid the risk of determining the distribution of natural images as that of generated images. We propose to leverage large-scale pre-trained models to calculate the uncertainty as the score for detecting AI-generated images. This leads to a simple yet effective method for detecting AI-generated images using large-scale vision models: images that induce high uncertainty are identified as AI-generated. Comprehensive experiments across multiple benchmarks demonstrate the effectiveness of our method.


Attributed Graph Clustering via Generalized Quaternion Representation Learning

arXiv.org Artificial Intelligence

Clustering complex data in the form of attributed graphs has attracted increasing attention, where appropriate graph representation is a critical prerequisite for accurate cluster analysis. However, the Graph Convolutional Network will homogenize the representation of graph nodes due to the well-known over-smoothing effect. This limits the network architecture to a shallow one, losing the ability to capture the critical global distribution information for clustering. Therefore, we propose a generalized graph auto-encoder network, which introduces quaternion operations to the encoders to achieve efficient structured feature representation learning without incurring deeper network and larger-scale parameters. The generalization of our method lies in the following two aspects: 1) connecting the quaternion operation naturally suitable for four feature components with graph data of arbitrary attribute dimensions, and 2) introducing a generalized graph clustering objective as a loss term to obtain clustering-friendly representations without requiring a pre-specified number of clusters $k$. It turns out that the representations of nodes learned by the proposed Graph Clustering based on Generalized Quaternion representation learning (GCGQ) are more discriminative, containing global distribution information, and are more general, suiting downstream clustering under different $k$s. Extensive experiments including significance tests, ablation studies, and qualitative results, illustrate the superiority of GCGQ. The source code is temporarily opened at \url{https://anonymous.4open.science/r/ICLR-25-No7181-codes}.


Order Is All You Need for Categorical Data Clustering

arXiv.org Machine Learning

Categorical data composed of nominal valued attributes are ubiquitous in knowledge discovery and data mining tasks. Due to the lack of well-defined metric space, categorical data distributions are difficult to intuitively understand. Clustering is a popular technique suitable for data analysis. However, the success of clustering often relies on reasonable distance metrics, which happens to be what categorical data naturally lack. Therefore, the cluster analysis of categorical data is considered a critical but challenging problem. This paper introduces the new finding that the order relation among attribute values is the decisive factor in clustering accuracy, and is also the key to understanding the categorical data clusters. To automatically obtain the orders, we propose a new learning paradigm that allows joint learning of clusters and the orders. It turns out that clustering with order learning achieves superior clustering accuracy, and the learned orders provide intuition for understanding the cluster distribution of categorical data. Extensive experiments with statistical evidence and case studies have verified the effectiveness of the new ``order is all you need'' insight and the proposed method.


FuseFL: One-Shot Federated Learning through the Lens of Causality with Progressive Model Fusion

arXiv.org Artificial Intelligence

One-shot Federated Learning (OFL) significantly reduces communication costs in FL by aggregating trained models only once. However, the performance of advanced OFL methods is far behind the normal FL. In this work, we provide a causal view to find that this performance drop of OFL methods comes from the isolation problem, which means that local isolatedly trained models in OFL may easily fit to spurious correlations due to the data heterogeneity. From the causal perspective, we observe that the spurious fitting can be alleviated by augmenting intermediate features from other clients. Built upon our observation, we propose a novel learning approach to endow OFL with superb performance and low communication and storage costs, termed as FuseFL. Specifically, FuseFL decomposes neural networks into several blocks, and progressively trains and fuses each block following a bottom-up manner for feature augmentation, introducing no additional communication costs. Comprehensive experiments demonstrate that FuseFL outperforms existing OFL and ensemble FL by a significant margin. We conduct comprehensive experiments to show that FuseFL supports high scalability of clients, heterogeneous model training, and low memory costs. Our work is the first attempt using causality to analyze and alleviate data heterogeneity of OFL.


Interpreting and Improving Large Language Models in Arithmetic Calculation

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated remarkable potential across numerous applications and have shown an emergent ability to tackle complex reasoning tasks, such as mathematical computations. However, even for the simplest arithmetic calculations, the intrinsic mechanisms behind LLMs remain mysterious, making it challenging to ensure reliability. In this work, we delve into uncovering a specific mechanism by which LLMs execute calculations. Through comprehensive experiments, we find that LLMs frequently involve a small fraction (< 5%) of attention heads, which play a pivotal role in focusing on operands and operators during calculation processes. Subsequently, the information from these operands is processed through multi-layer perceptrons (MLPs), progressively leading to the final solution. These pivotal heads/MLPs, though identified on a specific dataset, exhibit transferability across different datasets and even distinct tasks. This insight prompted us to investigate the potential benefits of selectively fine-tuning these essential heads/MLPs to boost the LLMs' computational performance. We empirically find that such precise tuning can yield notable enhancements on mathematical prowess, without compromising the performance on non-mathematical tasks. Our work serves as a preliminary exploration into the arithmetic calculation abilities inherent in LLMs, laying a solid foundation to reveal more intricate mathematical tasks.