Goto

Collaborating Authors

 Cherapanamjeri, Yeshwanth


Heavy-tailed Contamination is Easier than Adversarial Contamination

arXiv.org Machine Learning

A large body of work in the statistics and computer science communities dating back to Huber (Huber, 1960) has led to statistically and computationally efficient outlier-robust estimators. Two particular outlier models have received significant attention: the adversarial and heavy-tailed models. While the former models outliers as the result of a malicious adversary manipulating the data, the latter relaxes distributional assumptions on the data allowing outliers to naturally occur as part of the data generating process. In the first setting, the goal is to develop estimators robust to the largest fraction of outliers while in the second, one seeks estimators to combat the loss of statistical efficiency, where the dependence on the failure probability is paramount. Despite these distinct motivations, the algorithmic approaches to both these settings have converged, prompting questions on the relationship between the models. In this paper, we investigate and provide a principled explanation for this phenomenon. First, we prove that any adversarially robust estimator is also resilient to heavy-tailed outliers for any statistical estimation problem with i.i.d data. As a corollary, optimal adversarially robust estimators for mean estimation, linear regression, and covariance estimation are also optimal heavy-tailed estimators. Conversely, for arguably the simplest high-dimensional estimation task of mean estimation, we construct heavy-tailed estimators whose application to the adversarial setting requires any black-box reduction to remove almost all the outliers in the data. Taken together, our results imply that heavy-tailed estimation is likely easier than adversarially robust estimation opening the door to novel algorithmic approaches for the heavy-tailed setting. Additionally, confidence intervals obtained for adversarially robust estimation also hold with high-probability.


How much is a noisy image worth? Data Scaling Laws for Ambient Diffusion

arXiv.org Artificial Intelligence

The quality of generative models depends on the quality of the data they are trained on. Creating large-scale, high-quality datasets is often expensive and sometimes impossible, e.g. in certain scientific applications where there is no access to clean data due to physical or instrumentation constraints. Ambient Diffusion and related frameworks train diffusion models with solely corrupted data (which are usually cheaper to acquire) but ambient models significantly underperform models trained on clean data. We study this phenomenon at scale by training more than $80$ models on data with different corruption levels across three datasets ranging from $30,000$ to $\approx 1.3$M samples. We show that it is impossible, at these sample sizes, to match the performance of models trained on clean data when only training on noisy data. Yet, a combination of a small set of clean data (e.g.~$10\%$ of the total dataset) and a large set of highly noisy data suffices to reach the performance of models trained solely on similar-size datasets of clean data, and in particular to achieve near state-of-the-art performance. We provide theoretical evidence for our findings by developing novel sample complexity bounds for learning from Gaussian Mixtures with heterogeneous variances. Our theoretical model suggests that, for large enough datasets, the effective marginal utility of a noisy sample is exponentially worse than that of a clean sample. Providing a small set of clean samples can significantly reduce the sample size requirements for noisy data, as we also observe in our experiments.


Mechanistic Interpretation through Contextual Decomposition in Transformers

arXiv.org Artificial Intelligence

Transformers exhibit impressive capabilities but are often regarded as black boxes due to challenges in understanding the complex nonlinear relationships between features. Interpreting machine learning models is of paramount importance to mitigate risks, and mechanistic interpretability is in particular of current interest as it opens up a window for guiding manual modifications and reverse-engineering solutions. In this work, we introduce contextual decomposition for transformers (CD-T), extending a prior work on CD for RNNs and CNNs, to address mechanistic interpretation computationally efficiently. CD-T is a flexible interpretation method for transformers. It can capture contributions of combinations of input features or source internal components (e.g. attention heads, feed-forward networks) to (1) final predictions or (2) the output of any target internal component. Using CD-T, we propose a novel algorithm for circuit discovery. On a real-world pathology report classification task: we show CD-T distills a more faithful circuit of attention heads with improved computational efficiency (speed up 2x) than a prior benchmark, path patching. As a versatile interpretation method, CD-T also exhibits exceptional capabilities for local interpretations. CD-T is shown to reliably find words and phrases of contrasting sentiment/topic on SST-2 and AGNews datasets. Through human experiments, we demonstrate CD-T enables users to identify the more accurate of two models and to better trust a model's outputs compared to alternative interpretation methods such as SHAP and LIME.


Diagnosing Transformers: Illuminating Feature Spaces for Clinical Decision-Making

arXiv.org Artificial Intelligence

Pre-trained transformers are often fine-tuned to aid clinical decision-making using limited clinical notes. Model interpretability is crucial, especially in high-stakes domains like medicine, to establish trust and ensure safety, which requires human engagement. We introduce SUFO, a systematic framework that enhances interpretability of fine-tuned transformer feature spaces. SUFO utilizes a range of analytic and visualization techniques, including Supervised probing, Unsupervised similarity analysis, Feature dynamics, and Outlier analysis to address key questions about model trust and interpretability. We conduct a case study investigating the impact of pre-training data where we focus on real-world pathology classification tasks, and validate our findings on MedNLI. We evaluate five 110M-sized pre-trained transformer models, categorized into general-domain (BERT, TNLR), mixed-domain (BioBERT, Clinical BioBERT), and domain-specific (PubMedBERT) groups. Our SUFO analyses reveal that: (1) while PubMedBERT, the domain-specific model, contains valuable information for fine-tuning, it can overfit to minority classes when class imbalances exist. In contrast, mixed-domain models exhibit greater resistance to overfitting, suggesting potential improvements in domain-specific model robustness; (2) in-domain pre-training accelerates feature disambiguation during fine-tuning; and (3) feature spaces undergo significant sparsification during this process, enabling clinicians to identify common outlier modes among fine-tuned models as demonstrated in this paper. These findings showcase the utility of SUFO in enhancing trust and safety when using transformers in medicine, and we believe SUFO can aid practitioners in evaluating fine-tuned language models for other applications in medicine and in more critical domains.


Statistical Barriers to Affine-equivariant Estimation

arXiv.org Artificial Intelligence

We investigate the quantitative performance of affine-equivariant estimators for robust mean estimation. As a natural stability requirement, the construction of such affine-equivariant estimators has been extensively studied in the statistics literature. We quantitatively evaluate these estimators under two outlier models which have been the subject of much recent work: the heavy-tailed and adversarial corruption settings. We establish lower bounds which show that affine-equivariance induces a strict degradation in recovery error with quantitative rates degrading by a factor of $\sqrt{d}$ in both settings. We find that classical estimators such as the Tukey median (Tukey '75) and Stahel-Donoho estimator (Stahel '81 and Donoho '82) are either quantitatively sub-optimal even within the class of affine-equivariant estimators or lack any quantitative guarantees. On the other hand, recent estimators with strong quantitative guarantees are not affine-equivariant or require additional distributional assumptions to achieve it. We remedy this by constructing a new affine-equivariant estimator which nearly matches our lower bound. Our estimator is based on a novel notion of a high-dimensional median which may be of independent interest. Notably, our results are applicable more broadly to any estimator whose performance is evaluated in the Mahalanobis norm which, for affine-equivariant estimators, corresponds to an evaluation in Euclidean norm on isotropic distributions.


Optimal PAC Bounds Without Uniform Convergence

arXiv.org Artificial Intelligence

In statistical learning theory, determining the sample complexity of realizable binary classification for VC classes was a long-standing open problem. The results of Simon and Hanneke established sharp upper bounds in this setting. However, the reliance of their argument on the uniform convergence principle limits its applicability to more general learning settings such as multiclass classification. In this paper, we address this issue by providing optimal high probability risk bounds through a framework that surpasses the limitations of uniform convergence arguments. Our framework converts the leave-one-out error of permutation invariant predictors into high probability risk bounds. As an application, by adapting the one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth, we propose an algorithm that achieves an optimal PAC bound for binary classification. Specifically, our result shows that certain aggregations of one-inclusion graph algorithms are optimal, addressing a variant of a classic question posed by Warmuth. We further instantiate our framework in three settings where uniform convergence is provably suboptimal. For multiclass classification, we prove an optimal risk bound that scales with the one-inclusion hypergraph density of the class, addressing the suboptimality of the analysis of Daniely and Shalev-Shwartz. For partial hypothesis classification, we determine the optimal sample complexity bound, resolving a question posed by Alon, Hanneke, Holzman, and Moran. For realizable bounded regression with absolute loss, we derive an optimal risk bound that relies on a modified version of the scale-sensitive dimension, refining the results of Bartlett and Long. Our rates surpass standard uniform convergence-based results due to the smaller complexity measure in our risk bound.


The One-Inclusion Graph Algorithm is not Always Optimal

arXiv.org Artificial Intelligence

The one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth achieves an optimal in-expectation risk bound in the standard PAC classification setup. In one of the first COLT open problems, Warmuth conjectured that this prediction strategy always implies an optimal high probability bound on the risk, and hence is also an optimal PAC algorithm. We refute this conjecture in the strongest sense: for any practically interesting Vapnik-Chervonenkis class, we provide an in-expectation optimal one-inclusion graph algorithm whose high probability risk bound cannot go beyond that implied by Markov's inequality. Our construction of these poorly performing one-inclusion graph algorithms uses Varshamov-Tenengolts error correcting codes. Our negative result has several implications. First, it shows that the same poor high-probability performance is inherited by several recent prediction strategies based on generalizations of the one-inclusion graph algorithm. Second, our analysis shows yet another statistical problem that enjoys an estimator that is provably optimal in expectation via a leave-one-out argument, but fails in the high-probability regime. This discrepancy occurs despite the boundedness of the binary loss for which arguments based on concentration inequalities often provide sharp high probability risk bounds.


What Makes A Good Fisherman? Linear Regression under Self-Selection Bias

arXiv.org Artificial Intelligence

In the classical setting of self-selection, the goal is to learn $k$ models, simultaneously from observations $(x^{(i)}, y^{(i)})$ where $y^{(i)}$ is the output of one of $k$ underlying models on input $x^{(i)}$. In contrast to mixture models, where we observe the output of a randomly selected model, here the observed model depends on the outputs themselves, and is determined by some known selection criterion. For example, we might observe the highest output, the smallest output, or the median output of the $k$ models. In known-index self-selection, the identity of the observed model output is observable; in unknown-index self-selection, it is not. Self-selection has a long history in Econometrics and applications in various theoretical and applied fields, including treatment effect estimation, imitation learning, learning from strategically reported data, and learning from markets at disequilibrium. In this work, we present the first computationally and statistically efficient estimation algorithms for the most standard setting of this problem where the models are linear. In the known-index case, we require poly$(1/\varepsilon, k, d)$ sample and time complexity to estimate all model parameters to accuracy $\varepsilon$ in $d$ dimensions, and can accommodate quite general selection criteria. In the more challenging unknown-index case, even the identifiability of the linear models (from infinitely many samples) was not known. We show three results in this case for the commonly studied $\max$ self-selection criterion: (1) we show that the linear models are indeed identifiable, (2) for general $k$ we provide an algorithm with poly$(d) \exp(\text{poly}(k))$ sample and time complexity to estimate the regression parameters up to error $1/\text{poly}(k)$, and (3) for $k = 2$ we provide an algorithm for any error $\varepsilon$ and poly$(d, 1/\varepsilon)$ sample and time complexity.


Uniform Approximations for Randomized Hadamard Transforms with Applications

arXiv.org Machine Learning

Randomized Hadamard Transforms (RHTs) have emerged as a computationally efficient alternative to the use of dense unstructured random matrices across a range of domains in computer science and machine learning. For several applications such as dimensionality reduction and compressed sensing, the theoretical guarantees for methods based on RHTs are comparable to approaches using dense random matrices with i.i.d.\ entries. However, several such applications are in the low-dimensional regime where the number of rows sampled from the matrix is rather small. Prior arguments are not applicable to the high-dimensional regime often found in machine learning applications like kernel approximation. Given an ensemble of RHTs with Gaussian diagonals, $\{M^i\}_{i = 1}^m$, and any $1$-Lipschitz function, $f: \mathbb{R} \to \mathbb{R}$, we prove that the average of $f$ over the entries of $\{M^i v\}_{i = 1}^m$ converges to its expectation uniformly over $\| v \| \leq 1$ at a rate comparable to that obtained from using truly Gaussian matrices. We use our inequality to then derive improved guarantees for two applications in the high-dimensional regime: 1) kernel approximation and 2) distance estimation. For kernel approximation, we prove the first \emph{uniform} approximation guarantees for random features constructed through RHTs lending theoretical justification to their empirical success while for distance estimation, our convergence result implies data structures with improved runtime guarantees over previous work by the authors. We believe our general inequality is likely to find use in other applications.


A single gradient step finds adversarial examples on random two-layers neural networks

arXiv.org Machine Learning

Daniely and Schacham recently showed that gradient descent finds adversarial examples on random undercomplete two-layers ReLU neural networks. The term "undercomplete" refers to the fact that their proof only holds when the number of neurons is a vanishing fraction of the ambient dimension. We extend their result to the overcomplete case, where the number of neurons is larger than the dimension (yet also subexponential in the dimension). In fact we prove that a single step of gradient descent suffices. We also show this result for any subexponential width random neural network with smooth activation function.