Goto

Collaborating Authors

 Cheng, Shih-Fen


Enabling Sustainable Freight Forwarding Network via Collaborative Games

arXiv.org Artificial Intelligence

Freight forwarding plays a crucial role in facilitating global trade and logistics. However, as the freight forwarding market is extremely fragmented, freight forwarders often face the issue of not being able to fill the available shipping capacity. This recurrent issue motivates the creation of various freight forwarding networks that aim at exchanging capacities and demands so that the resource utilization of individual freight forwarders can be maximized. In this paper, we focus on how to design such a collaborative network based on collaborative game theory, with the Shapley value representing a fair scheme for profit sharing. Noting that the exact computation of Shapley values is intractable for large-scale real-world scenarios, we incorporate the observation that collaboration among two forwarders is only possible if their service routes and demands overlap. This leads to a new class of collaborative games called the Locally Collaborative Games (LCGs), where agents can only collaborate with their neighbors. We propose an efficient approach to compute Shapley values for LCGs, and numerically demonstrate that our approach significantly outperforms the state-of-the-art approach for a wide variety of network structures.


Imitating Cost-Constrained Behaviors in Reinforcement Learning

arXiv.org Artificial Intelligence

Complex planning and scheduling problems have long been solved using various optimization or heuristic approaches. In recent years, imitation learning that aims to learn from expert demonstrations has been proposed as a viable alternative to solving these problems. Generally speaking, imitation learning is designed to learn either the reward (or preference) model or directly the behavioral policy by observing the behavior of an expert. Existing work in imitation learning and inverse reinforcement learning has focused on imitation primarily in unconstrained settings (e.g., no limit on fuel consumed by the vehicle). However, in many real-world domains, the behavior of an expert is governed not only by reward (or preference) but also by constraints. For instance, decisions on self-driving delivery vehicles are dependent not only on the route preferences/rewards (depending on past demand data) but also on the fuel in the vehicle and the time available. In such problems, imitation learning is challenging as decisions are not only dictated by the reward model but are also dependent on a cost-constrained model. In this paper, we provide multiple methods that match expert distributions in the presence of trajectory cost constraints through (a) Lagrangian-based method; (b) Meta-gradients to find a good trade-off between expected return and minimizing constraint violation; and (c) Cost-violation-based alternating gradient. We empirically show that leading imitation learning approaches imitate cost-constrained behaviors poorly and our meta-gradient-based approach achieves the best performance.


Preference-Aware Delivery Planning for Last-Mile Logistics

arXiv.org Artificial Intelligence

Optimizing delivery routes for last-mile logistics service is challenging and has attracted the attention of many researchers. These problems are usually modeled and solved as variants of vehicle routing problems (VRPs) with challenging real-world constraints (e.g., time windows, precedence). However, despite many decades of solid research on solving these VRP instances, we still see significant gaps between optimized routes and the routes that are actually preferred by the practitioners. Most of these gaps are due to the difference between what's being optimized, and what the practitioners actually care about, which is hard to be defined exactly in many instances. In this paper, we propose a novel hierarchical route optimizer with learnable parameters that combines the strength of both the optimization and machine learning approaches. Our hierarchical router first solves a zone-level Traveling Salesman Problem with learnable weights on various zone-level features; with the zone visit sequence fixed, we then solve the stop-level vehicle routing problem as a Shortest Hamiltonian Path problem. The Bayesian optimization approach is then introduced to allow us to adjust the weights to be assigned to different zone features used in solving the zone-level Traveling Salesman Problem. By using a real-world delivery dataset provided by the Amazon Last Mile Routing Research Challenge, we demonstrate the importance of having both the optimization and the machine learning components. We also demonstrate how we can use route-related features to identify instances that we might have difficulty with. This paves ways to further research on how we can tackle these difficult instances.


Strategic Planning for Flexible Agent Availability in Large Taxi Fleets

arXiv.org Artificial Intelligence

In large-scale multi-agent systems like taxi fleets, individual agents (taxi drivers) are self-interested (maximizing their own profits) and this can introduce inefficiencies in the system. One such inefficiency is with regard to the "required" availability of taxis at different time periods during the day. Since a taxi driver can work for a limited number of hours in a day (e.g., 8-10 hours in a city like Singapore), there is a need to optimize the specific hours, so as to maximize individual as well as social welfare. Technically, this corresponds to solving a large-scale multi-stage selfish routing game with transition uncertainty. Existing work in addressing this problem is either unable to handle ``driver" constraints (e.g., breaks during work hours) or not scalable. To that end, we provide a novel mechanism that builds on replicator dynamics through ideas from behavior cloning. We demonstrate that our methods provide significantly better policies than the existing approach in terms of improving individual agent revenue and overall agent availability.


Improving Quantal Cognitive Hierarchy Model Through Iterative Population Learning

arXiv.org Artificial Intelligence

In domains where agents interact strategically, game theory is applied widely to predict how agents would behave. However, game-theoretic predictions are based on the assumption that agents are fully rational and believe in equilibrium plays, which unfortunately are mostly not true when human decision makers are involved. To address this limitation, a number of behavioral game-theoretic models are defined to account for the limited rationality of human decision makers. The "quantal cognitive hierarchy" (QCH) model, which is one of the more recent models, is demonstrated to be the state-of-art model for predicting human behaviors in normal-form games. The QCH model assumes that agents in games can be both non-strategic (level-0) and strategic (level-$k$). For level-0 agents, they choose their strategies irrespective of other agents. For level-$k$ agents, they assume that other agents would be behaving at levels less than $k$ and best respond against them. However, an important assumption of the QCH model is that the distribution of agents' levels follows a Poisson distribution. In this paper, we relax this assumption and design a learning-based method at the population level to iteratively estimate the empirical distribution of agents' reasoning levels. By using a real-world dataset from the Swedish lowest unique positive integer game, we demonstrate how our refined QCH model and the iterative solution-seeking process can be used in providing a more accurate behavioral model for agents. This leads to better performance in fitting the real data and allows us to track an agent's progress in learning to play strategically over multiple rounds.


Multiscale Generative Models: Improving Performance of a Generative Model Using Feedback from Other Dependent Generative Models

arXiv.org Machine Learning

Realistic fine-grained multi-agent simulation of real-world complex systems is crucial for many downstream tasks such as reinforcement learning. Recent work has used generative models (GANs in particular) for providing high-fidelity simulation of real-world systems. However, such generative models are often monolithic and miss out on modeling the interaction in multi-agent systems. In this work, we take a first step towards building multiple interacting generative models (GANs) that reflects the interaction in real world. We build and analyze a hierarchical set-up where a higher-level GAN is conditioned on the output of multiple lower-level GANs. We present a technique of using feedback from the higher-level GAN to improve performance of lower-level GANs. We mathematically characterize the conditions under which our technique is impactful, including understanding the transfer learning nature of our set-up. We present three distinct experiments on synthetic data, time series data, and image domain, revealing the wide applicability of our technique.


Upping the Game of Taxi Driving in the Age of Uber

AAAI Conferences

In most cities, taxis play an important role in providing point-to-point transportation service. If the taxi service is reliable, responsive, and cost-effective, past studies show that taxi-like services can be a viable choice in replacing a significant amount of private cars. However, making taxi services efficient is extremely challenging, mainly due to the fact that taxi drivers are self-interested and they operate with only local information. Although past research has demonstrated how recommendation systems could potentially help taxi drivers in improving their performance, most of these efforts are not feasible in practice. This is mostly due to the lack of both the comprehensive data coverage and an efficient recommendation engine that can scale to tens of thousands of drivers. In this paper, we propose a comprehensive working platform called the Driver Guidance System (DGS). With real-time citywide taxi data provided by our collaborator in Singapore, we demonstrate how we can combine real-time data analytics and large-scale optimization to create a guidance system that can potentially benefit tens of thousands of taxi drivers. Via a realistic agent-based simulation, we demonstrate that drivers following DGS can significantly improve their performance over ordinary drivers, regardless of the adoption ratios. We have concluded our system designing and building and have recently entered the field trial phase.


Achieving Stable and Fair Profit Allocation with Minimum Subsidy in Collaborative Logistics

AAAI Conferences

With the advent of e-commerce, logistics providers are faced with the challenge of handling fluctuating and sparsely distributed demand, which raises their operational costs significantly. As a result, horizontal cooperation are gaining momentum around the world. One of the major impediments, however, is the lack of stable and fair profit sharing mechanism. In this paper, we address this problem using the framework of computational cooperative games. We first present cooperative vehicle routing game as a model for collaborative logistics operations. Using the axioms of Shapley value as the conditions for fairness, we show that a stable, fair and budget balanced allocation does not exist in many instances of the game. By relaxing budget balance, we then propose an allocation scheme based on the normalized Shapley value. We show that this scheme maintains stability and fairness while requiring minimum subsidy. Finally, using numerical experiments we demonstrate the feasibility of the scheme under various settings.


TRACCS: A Framework for Trajectory-Aware Coordinated Urban Crowd-Sourcing

AAAI Conferences

We investigate the problem of large-scale mobile crowd-tasking, where a large pool of citizen crowd-workers are used to perform a variety of location-specific urban logistics tasks. Current approaches to such mobile crowd-tasking are very decentralized: a crowd-tasking platform usually provides each worker a set of available tasks close to the worker's current location; each worker then independently chooses which tasks she wants to accept and perform. In contrast, we propose TRACCS, a more coordinated task assignment approach, where the crowd-tasking platform assigns a sequence of tasks to each worker, taking into account their expected location trajectory over a wider time horizon, as opposed to just instantaneous location. We formulate such task assignment as an optimization problem, that seeks to maximize the total payoff from all assigned tasks, subject to a maximum bound on the detour (from the expected path) that a worker will experience to complete her assigned tasks. We develop credible computationally-efficient heuristics to address this optimization problem (whose exact solution requires solving a complex integer linear program), and show, via simulations with realistic topologies and commuting patterns, that a specific heuristic (called Greedy-ILS) increases the fraction of assigned tasks by more than 20%, and reduces the average detour overhead by more than 60%, compared to the current decentralized approach.


Decision Support for Agent Populations in Uncertain and Congested Environments

AAAI Conferences

This research is motivated by large scale problems in urban transportation and labor mobility where there is congestion for resources and uncertainty in movement. In such domains, even though the individual agents do not have an identity of their own and do not explicitly interact with other agents, they effect other agents. While there has been much research in handling such implicit effects, it has primarily assumed de- terministic movements of agents. We address the issue of decision support for individual agents that are identical and have involuntary movements in dynamic environments. For instance, in a taxi fleet serving a city, when a taxi is hired by a customer, its movements are uncontrolled and depend on (a) the customers requirement; and (b) the location of other taxis in the fleet. Towards addressing decision support in such problems, we make two key contributions: (a) A framework to represent the decision problem for selfish individuals in a dynamic population, where there is transitional uncertainty (involuntary movements); and (b) Two techniques (Fictitious Play for Symmetric Agent Populations, FP-SAP and Soft- max based Flow Update, SMFU) that converge to equilibrium solutions. We show that our techniques (apart from providing equilibrium strategies) outperform “driver” strategies with re- spect to overall availability of taxis and the revenue obtained by the taxi drivers. We demonstrate this on a real world data set with 8,000 taxis and 83 zones (representing the entire area of Singapore).