Goto

Collaborating Authors

 Chen, Zhe


Aligning Foundation Model Priors and Diffusion-Based Hand Interactions for Occlusion-Resistant Two-Hand Reconstruction

arXiv.org Artificial Intelligence

Two-hand reconstruction from monocular images faces persistent challenges due to complex and dynamic hand postures and occlusions, causing significant difficulty in achieving plausible interaction alignment. Existing approaches struggle with such alignment issues, often resulting in misalignment and penetration artifacts. To tackle this, we propose a novel framework that attempts to precisely align hand poses and interactions by synergistically integrating foundation model-driven 2D priors with diffusion-based interaction refinement for occlusion-resistant two-hand reconstruction. First, we introduce a Fusion Alignment Encoder that learns to align fused multimodal priors keypoints, segmentation maps, and depth cues from foundation models during training. This provides robust structured guidance, further enabling efficient inference without foundation models at test time while maintaining high reconstruction accuracy. Second, we employ a two-hand diffusion model explicitly trained to transform interpenetrated poses into plausible, non-penetrated interactions, leveraging gradient-guided denoising to correct artifacts and ensure realistic spatial relations. Extensive evaluations demonstrate that our method achieves state-of-the-art performance on InterHand2.6M, FreiHAND, and HIC datasets, significantly advancing occlusion handling and interaction robustness.


F\`ux\`i: A Benchmark for Evaluating Language Models on Ancient Chinese Text Understanding and Generation

arXiv.org Artificial Intelligence

Ancient Chinese text processing presents unique challenges for large language models (LLMs) due to its distinct linguistic features, complex structural constraints, and rich cultural context. While existing benchmarks have primarily focused on evaluating comprehension through multiple-choice questions, there remains a critical gap in assessing models' generative capabilities in classical Chinese. We introduce F\`ux\`i, a comprehensive benchmark that evaluates both understanding and generation capabilities across 21 diverse tasks. Our benchmark distinguishes itself through three key contributions: (1) balanced coverage of both comprehension and generation tasks, including novel tasks like poetry composition and couplet completion, (2) specialized evaluation metrics designed specifically for classical Chinese text generation, combining rule-based verification with fine-tuned LLM evaluators, and (3) a systematic assessment framework that considers both linguistic accuracy and cultural authenticity. Through extensive evaluation of state-of-the-art LLMs, we reveal significant performance gaps between understanding and generation tasks, with models achieving promising results in comprehension but struggling considerably in generation tasks, particularly those requiring deep cultural knowledge and adherence to classical formats. Our findings highlight the current limitations in ancient Chinese text processing and provide insights for future model development. The benchmark, evaluation toolkit, and baseline results are publicly available to facilitate research in this domain.


VisualPRM: An Effective Process Reward Model for Multimodal Reasoning

arXiv.org Artificial Intelligence

We introduce VisualPRM, an advanced multimodal Process Reward Model (PRM) with 8B parameters, which improves the reasoning abilities of existing Multimodal Large Language Models (MLLMs) across different model scales and families with Best-of-N (BoN) evaluation strategies. Specifically, our model improves the reasoning performance of three types of MLLMs and four different model scales. Even when applied to the highly capable InternVL2.5-78B, it achieves a 5.9-point improvement across seven multimodal reasoning benchmarks. Experimental results show that our model exhibits superior performance compared to Outcome Reward Models and Self-Consistency during BoN evaluation. To facilitate the training of multimodal PRMs, we construct a multimodal process supervision dataset VisualPRM400K using an automated data pipeline. For the evaluation of multimodal PRMs, we propose VisualProcessBench, a benchmark with human-annotated step-wise correctness labels, to measure the abilities of PRMs to detect erroneous steps in multimodal reasoning tasks. We hope that our work can inspire more future research and contribute to the development of MLLMs. Our model, data, and benchmark are released in https://internvl.github.io/blog/2025-03-13-VisualPRM/.


RL-OGM-Parking: Lidar OGM-Based Hybrid Reinforcement Learning Planner for Autonomous Parking

arXiv.org Artificial Intelligence

Autonomous parking has become a critical application in automatic driving research and development. Parking operations often suffer from limited space and complex environments, requiring accurate perception and precise maneuvering. Traditional rule-based parking algorithms struggle to adapt to diverse and unpredictable conditions, while learning-based algorithms lack consistent and stable performance in various scenarios. Therefore, a hybrid approach is necessary that combines the stability of rule-based methods and the generalizability of learning-based methods. Recently, reinforcement learning (RL) based policy has shown robust capability in planning tasks. However, the simulation-to-reality (sim-to-real) transfer gap seriously blocks the real-world deployment. To address these problems, we employ a hybrid policy, consisting of a rule-based Reeds-Shepp (RS) planner and a learning-based reinforcement learning (RL) planner. A real-time LiDAR-based Occupancy Grid Map (OGM) representation is adopted to bridge the sim-to-real gap, leading the hybrid policy can be applied to real-world systems seamlessly. We conducted extensive experiments both in the simulation environment and real-world scenarios, and the result demonstrates that the proposed method outperforms pure rule-based and learning-based methods. The real-world experiment further validates the feasibility and efficiency of the proposed method.


MedS$^3$: Towards Medical Small Language Models with Self-Evolved Slow Thinking

arXiv.org Artificial Intelligence

Medical language models (MLMs) have become pivotal in advancing medical natural language processing. However, prior models that rely on pre-training or supervised fine-tuning often exhibit low data efficiency and limited practicality in real-world clinical applications. While OpenAI's o1 highlights test-time scaling in mathematics, attempts to replicate this approach in medicine typically distill responses from GPT-series models to open-source models, focusing primarily on multiple-choice tasks. This strategy, though straightforward, neglects critical concerns like data privacy and realistic deployment in clinical settings. In this work, we present a deployable, small-scale medical reasoning system, MedS3, designed for long-chain reasoning in clinical tasks using a self-evolution paradigm. Starting with a seed dataset of around 8,000 instances spanning five domains and 16 datasets, we prompt a base policy model to perform Monte Carlo Tree Search (MCTS) to construct rule-verifiable reasoning chains. Each reasoning step is assigned an evolution rollout value, allowing verified trajectories to train the policy model and the process reward model (PRM). During inference, the policy model generates multiple responses, and the reward model selects the one with a newly proposed PRM-guided Vote-Sum (P-VS) strategy. Experiments on eleven evaluation datasets demonstrate that MedS3 outperforms not only the prior strongest medical model by 6.59, but also 32B-level general reasoning models by 8.71 points. Code and data are available at https://github.com/pixas/MedSSS.


RotateKV: Accurate and Robust 2-Bit KV Cache Quantization for LLMs via Outlier-Aware Adaptive Rotations

arXiv.org Artificial Intelligence

Key-Value (KV) cache facilitates efficient large language models (LLMs) inference by avoiding recomputation of past KVs. As the batch size and context length increase, the oversized KV caches become a significant memory bottleneck, highlighting the need for efficient compression. Existing KV quantization rely on fine-grained quantization or the retention of a significant portion of high bit-widths caches, both of which compromise compression ratio and often fail to maintain robustness at extremely low average bit-widths. In this work, we explore the potential of rotation technique for 2-bit KV quantization and propose RotateKV, which achieves accurate and robust performance through the following innovations: (i) Outlier-Aware Rotation, which utilizes channel-reordering to adapt the rotations to varying channel-wise outlier distributions without sacrificing the computational efficiency of the fast Walsh-Hadamard transform (FWHT); (ii) Pre-RoPE Grouped-Head Rotation, which mitigates the impact of rotary position embedding (RoPE) on proposed outlier-aware rotation and further smooths outliers across heads; (iii) Attention-Sink-Aware Quantization, which leverages the massive activations to precisely identify and protect attention sinks. RotateKV achieves less than 0.3 perplexity (PPL) degradation with 2-bit quantization on WikiText-2 using LLaMA-2-13B, maintains strong CoT reasoning and long-context capabilities, with less than 1.7\% degradation on GSM8K, outperforming existing methods even at lower average bit-widths. RotateKV also showcases a 3.97x reduction in peak memory usage, supports 5.75x larger batch sizes, and achieves a 2.32x speedup in decoding stage.


AKVQ-VL: Attention-Aware KV Cache Adaptive 2-Bit Quantization for Vision-Language Models

arXiv.org Artificial Intelligence

Vision-language models (VLMs) show remarkable performance in multimodal tasks. However, excessively long multimodal inputs lead to oversized Key-Value (KV) caches, resulting in significant memory consumption and I/O bottlenecks. Previous KV quantization methods for Large Language Models (LLMs) may alleviate these issues but overlook the attention saliency differences of multimodal tokens, resulting in suboptimal performance. In this paper, we investigate the attention-aware token saliency patterns in VLM and propose AKVQ-VL. AKVQ-VL leverages the proposed Text-Salient Attention (TSA) and Pivot-Token-Salient Attention (PSA) patterns to adaptively allocate bit budgets. Moreover, achieving extremely low-bit quantization requires effectively addressing outliers in KV tensors. AKVQ-VL utilizes the Walsh-Hadamard transform (WHT) to construct outlier-free KV caches, thereby reducing quantization difficulty. Evaluations of 2-bit quantization on 12 long-context and multimodal tasks demonstrate that AKVQ-VL maintains or even improves accuracy, outperforming LLM-oriented methods. AKVQ-VL can reduce peak memory usage by 2.13x, support up to 3.25x larger batch sizes and 2.46x throughput.


CBS with Continuous-Time Revisit

arXiv.org Artificial Intelligence

In recent years, researchers introduced the Multi-Agent Path Finding in Continuous Time (MAPFR) problem. Conflict-based search with Continuous Time (CCBS), a variant of CBS for discrete MAPF, aims to solve MAPFR with completeness and optimality guarantees. However, CCBS overlooked the fact that search algorithms only guarantee termination and return the optimal solution with a finite amount of search nodes. In this paper, we show that CCBS is incomplete, reveal the gaps in the existing implementation, demonstrate that patching is non-trivial, and discuss the next steps.


Towards Omni-RAG: Comprehensive Retrieval-Augmented Generation for Large Language Models in Medical Applications

arXiv.org Artificial Intelligence

Large language models (LLMs) hold promise for addressing healthcare challenges but often generate hallucinations due to limited integration of medical knowledge. Incorporating external medical knowledge is therefore critical, especially considering the breadth and complexity of medical content, which necessitates effective multi-source knowledge acquisition. We address this challenge by framing it as a source planning problem, where the task is to formulate context-appropriate queries tailored to the attributes of diverse knowledge sources. Existing approaches either overlook source planning or fail to achieve it effectively due to misalignment between the model's expectation of the sources and their actual content. To bridge this gap, we present MedOmniKB, a comprehensive repository comprising multigenre and multi-structured medical knowledge sources. Leveraging these sources, we propose the Source Planning Optimisation (SPO) method, which enhances multi-source utilisation through explicit planning optimisation. Our approach involves enabling an expert model to explore and evaluate potential plans while training a smaller model to learn source alignment using positive and negative planning samples. Experimental results demonstrate that our method substantially improves multi-source planning performance, enabling the optimised small model to achieve state-of-the-art results in leveraging diverse medical knowledge sources.


Online Guidance Graph Optimization for Lifelong Multi-Agent Path Finding

arXiv.org Artificial Intelligence

We study the problem of optimizing a guidance policy capable of dynamically guiding the agents for lifelong Multi-Agent Path Finding based on real-time traffic patterns. Multi-Agent Path Finding (MAPF) focuses on moving multiple agents from their starts to goals without collisions. Its lifelong variant, LMAPF, continuously assigns new goals to agents. In this work, we focus on improving the solution quality of PIBT, a state-of-the-art rule-based LMAPF algorithm, by optimizing a policy to generate adaptive guidance. We design two pipelines to incorporate guidance in PIBT in two different ways. We demonstrate the superiority of the optimized policy over both static guidance and human-designed policies. Additionally, we explore scenarios where task distribution changes over time, a challenging yet common situation in real-world applications that is rarely explored in the literature.