Goto

Collaborating Authors

 Chen, Xin


An Attentive Representative Sample Selection Strategy Combined with Balanced Batch Training for Skin Lesion Segmentation

arXiv.org Artificial Intelligence

An often overlooked problem in medical image segmentation research is the effective selection of training subsets to annotate from a complete set of unlabelled data. Many studies select their training sets at random, which may lead to suboptimal model performance, especially in the minimal supervision setting where each training image has a profound effect on performance outcomes. This work aims to address this issue. We use prototypical contrasting learning and clustering to extract representative and diverse samples for annotation. We improve upon prior works with a bespoke cluster-based image selection process. Additionally, we introduce the concept of unsupervised balanced batch dataloading to medical image segmentation, which aims to improve model learning with minimally annotated data. We evaluated our method on a public skin lesion dataset (ISIC 2018) and compared it to another state-of-the-art data sampling method. Our method achieved superior performance in a low annotation budget scenario.


SciHorizon: Benchmarking AI-for-Science Readiness from Scientific Data to Large Language Models

arXiv.org Artificial Intelligence

In recent years, the rapid advancement of Artificial Intelligence (AI) technologies, particularly Large Language Models (LLMs), has revolutionized the paradigm of scientific discovery, establishing AI-for-Science (AI4Science) as a dynamic and evolving field. However, there is still a lack of an effective framework for the overall assessment of AI4Science, particularly from a holistic perspective on data quality and model capability. Therefore, in this study, we propose SciHorizon, a comprehensive assessment framework designed to benchmark the readiness of AI4Science from both scientific data and LLM perspectives. First, we introduce a generalizable framework for assessing AI-ready scientific data, encompassing four key dimensions: Quality, FAIRness, Explainability, and Compliance which are subdivided into 15 sub-dimensions. Drawing on data resource papers published between 2018 and 2023 in peer-reviewed journals, we present recommendation lists of AI-ready datasets for both Earth and Life Sciences, making a novel and original contribution to the field. Concurrently, to assess the capabilities of LLMs across multiple scientific disciplines, we establish 16 assessment dimensions based on five core indicators Knowledge, Understanding, Reasoning, Multimodality, and Values spanning Mathematics, Physics, Chemistry, Life Sciences, and Earth and Space Sciences. Using the developed benchmark datasets, we have conducted a comprehensive evaluation of over 20 representative open-source and closed source LLMs. All the results are publicly available and can be accessed online at www.scihorizon.cn/en.


SeqSAM: Autoregressive Multiple Hypothesis Prediction for Medical Image Segmentation using SAM

arXiv.org Artificial Intelligence

Pre-trained segmentation models are a powerful and flexible tool for segmenting images. Recently, this trend has extended to medical imaging. Yet, often these methods only produce a single prediction for a given image, neglecting inherent uncertainty in medical images, due to unclear object boundaries and errors caused by the annotation tool. Multiple Choice Learning is a technique for generating multiple masks, through multiple learned prediction heads. However, this cannot readily be extended to producing more outputs than its initial pre-training hyperparameters, as the sparse, winner-takes-all loss function makes it easy for one prediction head to become overly dominant, thus not guaranteeing the clinical relevancy of each mask produced. We introduce SeqSAM, a sequential, RNN-inspired approach to generating multiple masks, which uses a bipartite matching loss for ensuring the clinical relevancy of each mask, and can produce an arbitrary number of masks. We show notable improvements in quality of each mask produced across two publicly available datasets. Our code is available at https://github.com/BenjaminTowle/SeqSAM.


Deep Learning-Powered Electrical Brain Signals Analysis: Advancing Neurological Diagnostics

arXiv.org Artificial Intelligence

Neurological disorders represent significant global health challenges, driving the advancement of brain signal analysis methods. Scalp electroencephalography (EEG) and intracranial electroencephalography (iEEG) are widely used to diagnose and monitor neurological conditions. However, dataset heterogeneity and task variations pose challenges in developing robust deep learning solutions. This review systematically examines recent advances in deep learning approaches for EEG/iEEG-based neurological diagnostics, focusing on applications across 7 neurological conditions using 46 datasets. We explore trends in data utilization, model design, and task-specific adaptations, highlighting the importance of pre-trained multi-task models for scalable, generalizable solutions. To advance research, we propose a standardized benchmark for evaluating models across diverse datasets to enhance reproducibility. This survey emphasizes how recent innovations can transform neurological diagnostics and enable the development of intelligent, adaptable healthcare solutions.


Baichuan-M1: Pushing the Medical Capability of Large Language Models

arXiv.org Artificial Intelligence

The current generation of large language models (LLMs) is typically designed for broad, general-purpose applications, while domain-specific LLMs, especially in vertical fields like medicine, remain relatively scarce. In particular, the development of highly efficient and practical LLMs for the medical domain is challenging due to the complexity of medical knowledge and the limited availability of high-quality data. To bridge this gap, we introduce Baichuan-M1, a series of large language models specifically optimized for medical applications. Unlike traditional approaches that simply continue pretraining on existing models or apply post-training to a general base model, Baichuan-M1 is trained from scratch with a dedicated focus on enhancing medical capabilities. Our model is trained on 20 trillion tokens and incorporates a range of effective training methods that strike a balance between general capabilities and medical expertise. As a result, Baichuan-M1 not only performs strongly across general domains such as mathematics and coding but also excels in specialized medical fields. We have open-sourced Baichuan-M1-14B, a mini version of our model, which can be accessed through the following links.


Gradient Co-occurrence Analysis for Detecting Unsafe Prompts in Large Language Models

arXiv.org Artificial Intelligence

Unsafe prompts pose significant safety risks to large language models (LLMs). Existing methods for detecting unsafe prompts rely on data-driven fine-tuning to train guardrail models, necessitating significant data and computational resources. In contrast, recent few-shot gradient-based methods emerge, requiring only few safe and unsafe reference prompts. A gradient-based approach identifies unsafe prompts by analyzing consistent patterns of the gradients of safety-critical parameters in LLMs. Although effective, its restriction to directional similarity (cosine similarity) introduces ``directional bias'', limiting its capability to identify unsafe prompts. To overcome this limitation, we introduce GradCoo, a novel gradient co-occurrence analysis method that expands the scope of safety-critical parameter identification to include unsigned gradient similarity, thereby reducing the impact of ``directional bias'' and enhancing the accuracy of unsafe prompt detection. Comprehensive experiments on the widely-used benchmark datasets ToxicChat and XStest demonstrate that our proposed method can achieve state-of-the-art (SOTA) performance compared to existing methods. Moreover, we confirm the generalizability of GradCoo in detecting unsafe prompts across a range of LLM base models with various sizes and origins.


Baichuan-Omni-1.5 Technical Report

arXiv.org Artificial Intelligence

We introduce Baichuan-Omni-1.5, an omni-modal model that not only has omni-modal understanding capabilities but also provides end-to-end audio generation capabilities. To achieve fluent and high-quality interaction across modalities without compromising the capabilities of any modality, we prioritized optimizing three key aspects. First, we establish a comprehensive data cleaning and synthesis pipeline for multimodal data, obtaining about 500B high-quality data (text, audio, and vision). Second, an audio-tokenizer (Baichuan-Audio-Tokenizer) has been designed to capture both semantic and acoustic information from audio, enabling seamless integration and enhanced compatibility with MLLM. Lastly, we designed a multi-stage training strategy that progressively integrates multimodal alignment and multitask fine-tuning, ensuring effective synergy across all modalities. Baichuan-Omni-1.5 leads contemporary models (including GPT4o-mini and MiniCPM-o 2.6) in terms of comprehensive omni-modal capabilities. Notably, it achieves results comparable to leading models such as Qwen2-VL-72B across various multimodal medical benchmarks.


ChemDFM-X: Towards Large Multimodal Model for Chemistry

arXiv.org Artificial Intelligence

Rapid developments of AI tools are expected to offer unprecedented assistance to the research of natural science including chemistry. However, neither existing unimodal task-specific specialist models nor emerging general large multimodal models (LMM) can cover the wide range of chemical data modality and task categories. To address the real demands of chemists, a cross-modal Chemical General Intelligence (CGI) system, which serves as a truly practical and useful research assistant utilizing the great potential of LMMs, is in great need. In this work, we introduce the first Cross-modal Dialogue Foundation Model for Chemistry (ChemDFM-X). Diverse multimodal data are generated from an initial modality by approximate calculations and task-specific model predictions. This strategy creates sufficient chemical training corpora, while significantly reducing excessive expense, resulting in an instruction-tuning dataset containing 7.6M data. After instruction finetuning, ChemDFM-X is evaluated on extensive experiments of different chemical tasks with various data modalities. The results demonstrate the capacity of ChemDFM-X for multimodal and inter-modal knowledge comprehension. ChemDFM-X marks a significant milestone toward aligning all modalities in chemistry, a step closer to CGI.


AI-Driven Day-to-Day Route Choice

arXiv.org Artificial Intelligence

Understanding individual travel behaviors is critical for developing efficient and sustainable transportation systems. Travel behavioral analysis aims to capture the decision-making process of individual travel execution, including travel route choice, travel mode choice, departure time choice, and trip purpose. Among these choices, modeling route choice not only helps analyze and understand travelers' behaviors, but also constitutes the essential part of traffic assignment methods [1]. Specifically, it enables the evaluation of travelers' perceptions of route characteristics, the forecasting of behavior in hypothetical scenarios, the prediction of future traffic dynamics on transportation networks, and the understanding of travelers' responses to travel information. Real-world route choice is complex because of the inherent difficulties in accurately representing human behavior, travelers' limited knowledge of network composition, uncertainties in perceptions of route characteristics, and the lack of precise information about travelers' preferences [1]. To overcome these limitations, DTD traffic dynamics have attracted significant attention since they focus on drivers' dynamic shifts in route choices and the evolution of traffic flow over time, rather than merely static equilibrium states. DTD models are flexible to incorporate diverse behavioral rules such as forecasting [2, 3], bounded rationality [4, 5], decision-making based on prospects [6, 7], marginal utility effects [8, 9], and social interactions [10]. Despite these advantages identified in [11] and [12], DTD models still struggle to accurately reflect the observed fluctuations in traffic dynamics, particularly the persistent deviations around User Equilibrium (UE) noted in empirical studies [13, 14, 15]. To better understand traffic dynamics, Agent-Based Modeling (ABM) offers a promising alternative.


From Generalist to Specialist: A Survey of Large Language Models for Chemistry

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have significantly transformed our daily life and established a new paradigm in natural language processing (NLP). However, the predominant pretraining of LLMs on extensive web-based texts remains insufficient for advanced scientific discovery, particularly in chemistry. The scarcity of specialized chemistry data, coupled with the complexity of multi-modal data such as 2D graph, 3D structure and spectrum, present distinct challenges. Although several studies have reviewed Pretrained Language Models (PLMs) in chemistry, there is a conspicuous absence of a systematic survey specifically focused on chemistry-oriented LLMs. In this paper, we outline methodologies for incorporating domain-specific chemistry knowledge and multi-modal information into LLMs, we also conceptualize chemistry LLMs as agents using chemistry tools and investigate their potential to accelerate scientific research. Additionally, we conclude the existing benchmarks to evaluate chemistry ability of LLMs. Finally, we critically examine the current challenges and identify promising directions for future research. Through this comprehensive survey, we aim to assist researchers in staying at the forefront of developments in chemistry LLMs and to inspire innovative applications in the field.