Goto

Collaborating Authors

 Chen, Wenting


HySurvPred: Multimodal Hyperbolic Embedding with Angle-Aware Hierarchical Contrastive Learning and Uncertainty Constraints for Survival Prediction

arXiv.org Artificial Intelligence

Multimodal learning that integrates histopathology images and genomic data holds great promise for cancer survival prediction. However, existing methods face key limitations: 1) They rely on multimodal mapping and metrics in Euclidean space, which cannot fully capture the hierarchical structures in histopathology (among patches from different resolutions) and genomics data (from genes to pathways). 2) They discretize survival time into independent risk intervals, which ignores its continuous and ordinal nature and fails to achieve effective optimization. 3) They treat censorship as a binary indicator, excluding censored samples from model optimization and not making full use of them. To address these challenges, we propose HySurvPred, a novel framework for survival prediction that integrates three key modules: Multimodal Hyperbolic Mapping (MHM), Angle-aware Ranking-based Contrastive Loss (ARCL) and Censor-Conditioned Uncertainty Constraint (CUC). Instead of relying on Euclidean space, we design the MHM module to explore the inherent hierarchical structures within each modality in hyperbolic space. To better integrate multimodal features in hyperbolic space, we introduce the ARCL module, which uses ranking-based contrastive learning to preserve the ordinal nature of survival time, along with the CUC module to fully explore the censored data. Extensive experiments demonstrate that our method outperforms state-of-the-art methods on five benchmark datasets. The source code is to be released.


A Survey of LLM-based Agents in Medicine: How far are we from Baymax?

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are transforming healthcare through the development of LLM-based agents that can understand, reason about, and assist with medical tasks. This survey provides a comprehensive review of LLM-based agents in medicine, examining their architectures, applications, and challenges. We analyze the key components of medical agent systems, including system profiles, clinical planning mechanisms, medical reasoning frameworks, and external capacity enhancement. The survey covers major application scenarios such as clinical decision support, medical documentation, training simulations, and healthcare service optimization. We discuss evaluation frameworks and metrics used to assess these agents' performance in healthcare settings. While LLM-based agents show promise in enhancing healthcare delivery, several challenges remain, including hallucination management, multimodal integration, implementation barriers, and ethical considerations. The survey concludes by highlighting future research directions, including advances in medical reasoning inspired by recent developments in LLM architectures, integration with physical systems, and improvements in training simulations. This work provides researchers and practitioners with a structured overview of the current state and future prospects of LLM-based agents in medicine.


WSI-LLaVA: A Multimodal Large Language Model for Whole Slide Image

arXiv.org Artificial Intelligence

Recent advancements in computational pathology have produced patch-level Multi-modal Large Language Models (MLLMs), but these models are limited by their inability to analyze whole slide images (WSIs) comprehensively and their tendency to bypass crucial morphological features that pathologists rely on for diagnosis. To address these challenges, we first introduce WSI-Bench, a large-scale morphology-aware benchmark containing 180k VQA pairs from 9,850 WSIs across 30 cancer types, designed to evaluate MLLMs' understanding of morphological characteristics crucial for accurate diagnosis. Building upon this benchmark, we present WSI-LLaVA, a novel framework for gigapixel WSI understanding that employs a three-stage training approach: WSI-text alignment, feature space alignment, and task-specific instruction tuning. To better assess model performance in pathological contexts, we develop two specialized WSI metrics: WSI-Precision and WSI-Relevance. Experimental results demonstrate that WSI-LLaVA outperforms existing models across all capability dimensions, with a significant improvement in morphological analysis, establishing a clear correlation between morphological understanding and diagnostic accuracy.


Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking

arXiv.org Artificial Intelligence

Clinical decision making (CDM) is a complex, dynamic process crucial to healthcare delivery, yet it remains a significant challenge for artificial intelligence systems. While Large Language Model (LLM)-based agents have been tested on general medical knowledge using licensing exams and knowledge question-answering tasks, their performance in the CDM in real-world scenarios is limited due to the lack of comprehensive testing datasets that mirror actual medical practice. To address this gap, we present MedChain, a dataset of 12,163 clinical cases that covers five key stages of clinical workflow. MedChain distinguishes itself from existing benchmarks with three key features of real-world clinical practice: personalization, interactivity, and sequentiality. Further, to tackle real-world CDM challenges, we also propose MedChain-Agent, an AI system that integrates a feedback mechanism and a MCase-RAG module to learn from previous cases and adapt its responses. MedChain-Agent demonstrates remarkable adaptability in gathering information dynamically and handling sequential clinical tasks, significantly outperforming existing approaches. The relevant dataset and code will be released upon acceptance of this paper.


A Spectrum Evaluation Benchmark for Medical Multi-Modal Large Language Models

arXiv.org Artificial Intelligence

The significant breakthroughs of Medical Multi-Modal Large Language Models (Med-MLLMs) renovate modern healthcare with robust information synthesis and medical decision support. However, these models are often evaluated on benchmarks that are unsuitable for the Med-MLLMs due to the complexity of real-world diagnostics across diverse specialties. To address this gap, we introduce Asclepius, a novel Med-MLLM benchmark that comprehensively assesses Med-MLLMs in terms of: distinct medical specialties (cardiovascular, gastroenterology, etc.) and different diagnostic capacities (perception, disease analysis, etc.). Grounded in 3 proposed core principles, Asclepius ensures a comprehensive evaluation by encompassing 15 medical specialties, stratifying into 3 main categories and 8 sub-categories of clinical tasks, and exempting overlap with existing VQA dataset. We further provide an in-depth analysis of 6 Med-MLLMs and compare them with 3 human specialists, providing insights into their competencies and limitations in various medical contexts. Our work not only advances the understanding of Med-MLLMs' capabilities but also sets a precedent for future evaluations and the safe deployment of these models in clinical environments.


Towards a Holistic Framework for Multimodal Large Language Models in Three-dimensional Brain CT Report Generation

arXiv.org Artificial Intelligence

Multi-modal large language models (MLLMs) have been given free rein to explore exciting medical applications with a primary focus on radiology report generation. Nevertheless, the preliminary success in 2D radiology captioning is incompetent to reflect the real-world diagnostic challenge in the volumetric 3D anatomy. To mitigate three crucial limitation aspects in the existing literature, including (1) data complexity, (2) model capacity, and (3) evaluation metric fidelity, we collected an 18,885 text-scan pairs 3D-BrainCT dataset and applied clinical visual instruction tuning (CVIT) to train BrainGPT models to generate radiology-adherent 3D brain CT reports. Statistically, our BrainGPT scored BLEU-1 = 44.35, BLEU-4 = 20.38, METEOR = 30.13, ROUGE-L = 47.6, and CIDEr-R = 211.77 during internal testing and demonstrated an accuracy of 0.91 in captioning midline shifts on the external validation CQ500 dataset. By further inspecting the captioned report, we reported that the traditional metrics appeared to measure only the surface text similarity and failed to gauge the information density of the diagnostic purpose. To close this gap, we proposed a novel Feature-Oriented Radiology Task Evaluation (FORTE) to estimate the report's clinical relevance (lesion feature and landmarks). Notably, the BrainGPT model scored an average FORTE F1-score of 0.71 (degree=0.661; landmark=0.706; feature=0.693; impression=0.779). To demonstrate that BrainGPT models possess objective readiness to generate human-like radiology reports, we conducted a Turing test that enrolled 11 physician evaluators, and around 74% of the BrainGPT-generated captions were indistinguishable from those written by humans. Our work embodies a holistic framework that showcased the first-hand experience of curating a 3D brain CT dataset, fine-tuning anatomy-sensible language models, and proposing robust radiology evaluation metrics.


Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning

arXiv.org Artificial Intelligence

In the medical multi-modal frameworks, the alignment of cross-modality features presents a significant challenge. However, existing works have learned features that are implicitly aligned from the data, without considering the explicit relationships in the medical context. This data-reliance may lead to low generalization of the learned alignment relationships. In this work, we propose the Eye-gaze Guided Multi-modal Alignment (EGMA) framework to harness eye-gaze data for better alignment of medical visual and textual features. We explore the natural auxiliary role of radiologists' eye-gaze data in aligning medical images and text, and introduce a novel approach by using eye-gaze data, collected synchronously by radiologists during diagnostic evaluations. We conduct downstream tasks of image classification and image-text retrieval on four medical datasets, where EGMA achieved state-of-the-art performance and stronger generalization across different datasets. Additionally, we explore the impact of varying amounts of eye-gaze data on model performance, highlighting the feasibility and utility of integrating this auxiliary data into multi-modal alignment framework.


Multi-Dataset Multi-Task Learning for COVID-19 Prognosis

arXiv.org Artificial Intelligence

In the fight against the COVID-19 pandemic, leveraging artificial intelligence to predict disease outcomes from chest radiographic images represents a significant scientific aim. The challenge, however, lies in the scarcity of large, labeled datasets with compatible tasks for training deep learning models without leading to overfitting. Addressing this issue, we introduce a novel multi-dataset multi-task training framework that predicts COVID-19 prognostic outcomes from chest X-rays (CXR) by integrating correlated datasets from disparate sources, distant from conventional multi-task learning approaches, which rely on datasets with multiple and correlated labeling schemes. Our framework hypothesizes that assessing severity scores enhances the model's ability to classify prognostic severity groups, thereby improving its robustness and predictive power. The proposed architecture comprises a deep convolutional network that receives inputs from two publicly available CXR datasets, AIforCOVID for severity prognostic prediction and BRIXIA for severity score assessment, and branches into task-specific fully connected output networks. Moreover, we propose a multi-task loss function, incorporating an indicator function, to exploit multi-dataset integration. The effectiveness and robustness of the proposed approach are demonstrated through significant performance improvements in prognosis classification tasks across 18 different convolutional neural network backbones in different evaluation strategies. This improvement is evident over single-task baselines and standard transfer learning strategies, supported by extensive statistical analysis, showing great application potential.


Medical Image Synthesis via Fine-Grained Image-Text Alignment and Anatomy-Pathology Prompting

arXiv.org Artificial Intelligence

Data scarcity and privacy concerns limit the availability of high-quality medical images for public use, which can be mitigated through medical image synthesis. However, current medical image synthesis methods often struggle to accurately capture the complexity of detailed anatomical structures and pathological conditions. To address these challenges, we propose a novel medical image synthesis model that leverages fine-grained image-text alignment and anatomy-pathology prompts to generate highly detailed and accurate synthetic medical images. Our method integrates advanced natural language processing techniques with image generative modeling, enabling precise alignment between descriptive text prompts and the synthesized images' anatomical and pathological details. The proposed approach consists of two key components: an anatomy-pathology prompting module and a fine-grained alignment-based synthesis module. The anatomy-pathology prompting module automatically generates descriptive prompts for high-quality medical images. To further synthesize high-quality medical images from the generated prompts, the fine-grained alignment-based synthesis module pre-defines a visual codebook for the radiology dataset and performs fine-grained alignment between the codebook and generated prompts to obtain key patches as visual clues, facilitating accurate image synthesis. We validate the superiority of our method through experiments on public chest X-ray datasets and demonstrate that our synthetic images preserve accurate semantic information, making them valuable for various medical applications.


Fine-Grained Image-Text Alignment in Medical Imaging Enables Cyclic Image-Report Generation

arXiv.org Artificial Intelligence

To address these issues, we propose a novel Adaptive patch-word Matching (AdaMatch) model to correlate chest X-ray (CXR) image regions with words in medical reports and apply it to CXR-report generation to provide explainability for the generation process. AdaMatch exploits the fine-grained relation between adaptive patches and words to provide explanations of specific image regions with corresponding words. To capture the abnormal regions of varying sizes and positions, we introduce the Adaptive Patch extraction (AdaPatch) module to acquire the adaptive patches for these regions adaptively. In order to provide explicit explainability for CXR-report generation task, we propose an AdaMatch-based bidirectional large language model for Cyclic CXR-report generation (AdaMatch-Cyclic). It employs the AdaMatch to obtain the keywords for CXR images and `keypatches' for medical reports as hints to guide CXR-report generation. Extensive experiments on two publicly available CXR datasets prove the effectiveness of our method and its superior performance to existing methods.