Chen, Wen
PPO-Based Vehicle Control for Ramp Merging Scheme Assisted by Enhanced C-V2X
Wu, Qiong, Ji, Maoxin, Fan, Pingyi, Wang, Kezhi, Cheng, Nan, Chen, Wen, Letaief, Khaled B.
On-ramp merging presents a critical challenge in autonomous driving, as vehicles from merging lanes need to dynamically adjust their positions and speeds while monitoring traffic on the main road to prevent collisions. To address this challenge, we propose a novel merging control scheme based on reinforcement learning, which integrates lateral control mechanisms. This approach ensures the smooth integration of vehicles from the merging lane onto the main road, optimizing both fuel efficiency and passenger comfort. Furthermore, we recognize the impact of vehicle-to-vehicle (V2V) communication on control strategies and introduce an enhanced protocol leveraging Cellular Vehicle-to-Everything (C-V2X) Mode 4. This protocol aims to reduce the Age of Information (AoI) and improve communication reliability. In our simulations, we employ two AoI-based metrics to rigorously assess the protocol's effectiveness in autonomous driving scenarios. By combining the NS3 network simulator with Python, we simulate V2V communication and vehicle control simultaneously. The results demonstrate that the enhanced C-V2X Mode 4 outperforms the standard version, while the proposed control scheme ensures safe and reliable vehicle operation during on-ramp merging.
DRL-Based Optimization for AoI and Energy Consumption in C-V2X Enabled IoV
Zhang, Zheng, Wu, Qiong, Fan, Pingyi, Cheng, Nan, Chen, Wen, Letaief, Khaled B.
To address communication latency issues, the Third Generation Partnership Project (3GPP) has defined Cellular-Vehicle to Everything (C-V2X) technology, which includes Vehicle-to-Vehicle (V2V) communication for direct vehicle-to-vehicle communication. However, this method requires vehicles to autonomously select communication resources based on the Semi-Persistent Scheduling (SPS) protocol, which may lead to collisions due to different vehicles sharing the same communication resources, thereby affecting communication effectiveness. Non-Orthogonal Multiple Access (NOMA) is considered a potential solution for handling large-scale vehicle communication, as it can enhance the Signal-to-Interference-plus-Noise Ratio (SINR) by employing Successive Interference Cancellation (SIC), thereby reducing the negative impact of communication collisions. When evaluating vehicle communication performance, traditional metrics such as reliability and transmission delay present certain contradictions. Introducing the new metric Age of Information (AoI) provides a more comprehensive evaluation of communication system. Additionally, to ensure service quality, user terminals need to possess high computational capabilities, which may lead to increased energy consumption, necessitating a trade-off between communication energy consumption and effectiveness. Given the complexity and dynamics of communication systems, Deep Reinforcement Learning (DRL) serves as an intelligent learning method capable of learning optimal strategies in dynamic environments. Therefore, this paper analyzes the effects of multi-priority queues and NOMA on AoI in the C-V2X vehicular communication system and proposes an energy consumption and AoI optimization method based on DRL. Finally, through comparative simulations with baseline methods, the proposed approach demonstrates its advances in terms of energy consumption and AoI.
Semantic-Aware Resource Management for C-V2X Platooning via Multi-Agent Reinforcement Learning
Shao, Zhiyu, Wu, Qiong, Fan, Pingyi, Wang, Kezhi, Fan, Qiang, Chen, Wen, Letaief, Khaled B.
This paper presents a semantic-aware multi-modal resource allocation (SAMRA) for multi-task using multi-agent reinforcement learning (MARL), termed SAMRAMARL, utilizing in platoon systems where cellular vehicle-to-everything (C-V2X) communication is employed. The proposed approach leverages the semantic information to optimize the allocation of communication resources. By integrating a distributed multi-agent reinforcement learning (MARL) algorithm, SAMRAMARL enables autonomous decision-making for each vehicle, channel assignment optimization, power allocation, and semantic symbol length based on the contextual importance of the transmitted information. This semantic-awareness ensures that both vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications prioritize data that is critical for maintaining safe and efficient platoon operations. The framework also introduces a tailored quality of experience (QoE) metric for semantic communication, aiming to maximize QoE in V2V links while improving the success rate of semantic information transmission (SRS). Extensive simulations has demonstrated that SAMRAMARL outperforms existing methods, achieving significant gains in QoE and communication efficiency in C-V2X platooning scenarios.
Adversarial Federated Consensus Learning for Surface Defect Classification Under Data Heterogeneity in IIoT
Cui, Jixuan, Li, Jun, Mei, Zhen, Ni, Yiyang, Chen, Wen, Li, Zengxiang
The challenge of data scarcity hinders the application of deep learning in industrial surface defect classification (SDC), as it's difficult to collect and centralize sufficient training data from various entities in Industrial Internet of Things (IIoT) due to privacy concerns. Federated learning (FL) provides a solution by enabling collaborative global model training across clients while maintaining privacy. However, performance may suffer due to data heterogeneity-discrepancies in data distributions among clients. In this paper, we propose a novel personalized FL (PFL) approach, named Adversarial Federated Consensus Learning (AFedCL), for the challenge of data heterogeneity across different clients in SDC. First, we develop a dynamic consensus construction strategy to mitigate the performance degradation caused by data heterogeneity. Through adversarial training, local models from different clients utilize the global model as a bridge to achieve distribution alignment, alleviating the problem of global knowledge forgetting. Complementing this strategy, we propose a consensus-aware aggregation mechanism. It assigns aggregation weights to different clients based on their efficacy in global knowledge learning, thereby enhancing the global model's generalization capabilities. Finally, we design an adaptive feature fusion module to further enhance global knowledge utilization efficiency. Personalized fusion weights are gradually adjusted for each client to optimally balance global and local features. Compared with state-of-the-art FL methods like FedALA, the proposed AFedCL method achieves an accuracy increase of up to 5.67% on three SDC datasets.
V2X-Assisted Distributed Computing and Control Framework for Connected and Automated Vehicles under Ramp Merging Scenario
Wu, Qiong, Chu, Jiahou, Fan, Pingyi, Wang, Kezhi, Cheng, Nan, Chen, Wen, Letaief, Khaled B.
This paper investigates distributed computing and cooperative control of connected and automated vehicles (CAVs) in ramp merging scenario under transportation cyber-physical system. Firstly, a centralized cooperative trajectory planning problem is formulated subject to the safely constraints and traffic performance in ramp merging scenario, where the trajectories of all vehicles are jointly optimized. To get rid of the reliance on a central controller and reduce computation time, a distributed solution to this problem implemented among CAVs through Vehicles-to-Everything (V2X) communication is proposed. Unlike existing method, our method can distribute the computational task among CAVs and carry out parallel solving through V2X communication. Then, a multi-vehicles model predictive control (MPC) problem aimed at maximizing system stability and minimizing control input is formulated based on the solution of the first problem subject to strict safety constants and input limits. Due to these complex constraints, this problem becomes high-dimensional, centralized, and non-convex. To solve it in a short time, a decomposition and convex reformulation method, namely distributed cooperative iterative model predictive control (DCIMPC), is proposed. This method leverages the communication capability of CAVs to decompose the problem, making full use of the computational resources on vehicles to achieve fast solutions and distributed control. The two above problems with their corresponding solving methods form the systemic framework of the V2X assisted distributed computing and control. Simulations have been conducted to evaluate the framework's convergence, safety, and solving speed. Additionally, extra experiments are conducted to validate the performance of DCIMPC. The results show that our method can greatly improve computation speed without sacrificing system performance.
Blockchain-Enabled Variational Information Bottleneck for Data Extraction Based on Mutual Information in Internet of Vehicles
Zhang, Cui, Zhang, Wenjun, Wu, Qiong, Fan, Pingyi, Cheng, Nan, Chen, Wen, Letaief, Khaled B.
The Internet of Vehicles (IoV) network can address the issue of limited computing resources and data processing capabilities of individual vehicles, but it also brings the risk of privacy leakage to vehicle users. Applying blockchain technology can establish secure data links within the IoV, solving the problems of insufficient computing resources for each vehicle and the security of data transmission over the network. However, with the development of the IoV, the amount of data interaction between multiple vehicles and between vehicles and base stations, roadside units, etc., is continuously increasing. There is a need to further reduce the interaction volume, and intelligent data compression is key to solving this problem. The VIB technique facilitates the training of encoding and decoding models, substantially diminishing the volume of data that needs to be transmitted. This paper introduces an innovative approach that integrates blockchain with VIB, referred to as BVIB, designed to lighten computational workloads and reinforce the security of the network. We first construct a new network framework by separating the encoding and decoding networks to address the computational burden issue, and then propose a new algorithm to enhance the security of IoV networks. We also discuss the impact of the data extraction rate on system latency to determine the most suitable data extraction rate. An experimental framework combining Python and C++ has been established to substantiate the efficacy of our BVIB approach. Comprehensive simulation studies indicate that the BVIB consistently excels in comparison to alternative foundational methodologies.
Reconfigurable Intelligent Surface Aided Vehicular Edge Computing: Joint Phase-shift Optimization and Multi-User Power Allocation
Qi, Kangwei, Wu, Qiong, Fan, Pingyi, Cheng, Nan, Chen, Wen, Letaief, Khaled B.
Vehicular edge computing (VEC) is an emerging technology with significant potential in the field of internet of vehicles (IoV), enabling vehicles to perform intensive computational tasks locally or offload them to nearby edge devices. However, the quality of communication links may be severely deteriorated due to obstacles such as buildings, impeding the offloading process. To address this challenge, we introduce the use of Reconfigurable Intelligent Surfaces (RIS), which provide alternative communication pathways to assist vehicular communication. By dynamically adjusting the phase-shift of the RIS, the performance of VEC systems can be substantially improved. In this work, we consider a RIS-assisted VEC system, and design an optimal scheme for local execution power, offloading power, and RIS phase-shift, where random task arrivals and channel variations are taken into account. To address the scheme, we propose an innovative deep reinforcement learning (DRL) framework that combines the Deep Deterministic Policy Gradient (DDPG) algorithm for optimizing RIS phase-shift coefficients and the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm for optimizing the power allocation of vehicle user (VU). Simulation results show that our proposed scheme outperforms the traditional centralized DDPG, Twin Delayed Deep Deterministic Policy Gradient (TD3) and some typical stochastic schemes.
Resource Allocation for Twin Maintenance and Computing Task Processing in Digital Twin Vehicular Edge Computing Network
Xie, Yu, Wu, Qiong, Fan, Pingyi, Cheng, Nan, Chen, Wen, Wang, Jiangzhou, Letaief, Khaled B.
As a promising technology, vehicular edge computing (VEC) can provide computing and caching services by deploying VEC servers near vehicles. However, VEC networks still face challenges such as high vehicle mobility. Digital twin (DT), an emerging technology, can predict, estimate, and analyze real-time states by digitally modeling objects in the physical world. By integrating DT with VEC, a virtual vehicle DT can be created in the VEC server to monitor the real-time operating status of vehicles. However, maintaining the vehicle DT model requires ongoing attention from the VEC server, which also needs to offer computing services for the vehicles. Therefore, effective allocation and scheduling of VEC server resources are crucial. This study focuses on a general VEC network with a single VEC service and multiple vehicles, examining the two types of delays caused by twin maintenance and computational processing within the network. By transforming the problem using satisfaction functions, we propose an optimization problem aimed at maximizing each vehicle's resource utility to determine the optimal resource allocation strategy. Given the non-convex nature of the issue, we employ multi-agent Markov decision processes to reformulate the problem. Subsequently, we propose the twin maintenance and computing task processing resource collaborative scheduling (MADRL-CSTC) algorithm, which leverages multi-agent deep reinforcement learning. Through experimental comparisons with alternative algorithms, it demonstrates that our proposed approach is effective in terms of resource allocation.
Graph Neural Networks and Deep Reinforcement Learning Based Resource Allocation for V2X Communications
Ji, Maoxin, Wu, Qiong, Fan, Pingyi, Cheng, Nan, Chen, Wen, Wang, Jiangzhou, Letaief, Khaled B.
In the rapidly evolving landscape of Internet of Vehicles (IoV) technology, Cellular Vehicle-to-Everything (C-V2X) communication has attracted much attention due to its superior performance in coverage, latency, and throughput. Resource allocation within C-V2X is crucial for ensuring the transmission of safety information and meeting the stringent requirements for ultra-low latency and high reliability in Vehicle-to-Vehicle (V2V) communication. This paper proposes a method that integrates Graph Neural Networks (GNN) with Deep Reinforcement Learning (DRL) to address this challenge. By constructing a dynamic graph with communication links as nodes and employing the Graph Sample and Aggregation (GraphSAGE) model to adapt to changes in graph structure, the model aims to ensure a high success rate for V2V communication while minimizing interference on Vehicle-to-Infrastructure (V2I) links, thereby ensuring the successful transmission of V2V link information and maintaining high transmission rates for V2I links. The proposed method retains the global feature learning capabilities of GNN and supports distributed network deployment, allowing vehicles to extract low-dimensional features that include structural information from the graph network based on local observations and to make independent resource allocation decisions. Simulation results indicate that the introduction of GNN, with a modest increase in computational load, effectively enhances the decision-making quality of agents, demonstrating superiority to other methods. This study not only provides a theoretically efficient resource allocation strategy for V2V and V2I communications but also paves a new technical path for resource management in practical IoV environments.
Optimizing Age of Information in Vehicular Edge Computing with Federated Graph Neural Network Multi-Agent Reinforcement Learning
Wang, Wenhua, Wu, Qiong, Fan, Pingyi, Cheng, Nan, Chen, Wen, Wang, Jiangzhou, Letaief, Khaled B.
With the rapid development of intelligent vehicles and Intelligent Transport Systems (ITS), the sensors such as cameras and LiDAR installed on intelligent vehicles provides higher capacity of executing computation-intensive and delay-sensitive tasks, thereby raising deployment costs. To address this issue, Vehicular Edge Computing (VEC) has been proposed to process data through Road Side Units (RSUs) to support real-time applications. This paper focuses on the Age of Information (AoI) as a key metric for data freshness and explores task offloading issues for vehicles under RSU communication resource constraints. We adopt a Multi-agent Deep Reinforcement Learning (MADRL) approach, allowing vehicles to autonomously make optimal data offloading decisions. However, MADRL poses risks of vehicle information leakage during communication learning and centralized training. To mitigate this, we employ a Federated Learning (FL) framework that shares model parameters instead of raw data to protect the privacy of vehicle users. Building on this, we propose an innovative distributed federated learning framework combining Graph Neural Networks (GNN), named Federated Graph Neural Network Multi-Agent Reinforcement Learning (FGNN-MADRL), to optimize AoI across the system. For the first time, road scenarios are constructed as graph data structures, and a GNN-based federated learning framework is proposed, effectively combining distributed and centralized federated aggregation. Furthermore, we propose a new MADRL algorithm that simplifies decision making and enhances offloading efficiency, further reducing the decision complexity. Simulation results demonstrate the superiority of our proposed approach to other methods through simulations.