Goto

Collaborating Authors

 Chen, Shuyi


Global-Decision-Focused Neural ODEs for Proactive Grid Resilience Management

arXiv.org Artificial Intelligence

Extreme hazard events such as wildfires and hurricanes increasingly threaten power systems, causing widespread outages and disrupting critical services. Recently, predict-then-optimize approaches have gained traction in grid operations, where system functionality forecasts are first generated and then used as inputs for downstream decision-making. However, this two-stage method often results in a misalignment between prediction and optimization objectives, leading to suboptimal resource allocation. To address this, we propose predict-all-then-optimize-globally (PATOG), a framework that integrates outage prediction with globally optimized interventions. At its core, our global-decision-focused (GDF) neural ODE model captures outage dynamics while optimizing resilience strategies in a decision-aware manner. Unlike conventional methods, our approach ensures spatially and temporally coherent decision-making, improving both predictive accuracy and operational efficiency. Experiments on synthetic and real-world datasets demonstrate significant improvements in outage prediction consistency and grid resilience.


Gen-DFL: Decision-Focused Generative Learning for Robust Decision Making

arXiv.org Artificial Intelligence

Decision-focused learning (DFL) integrates predictive models with downstream optimization, directly training machine learning models to minimize decision errors. While DFL has been shown to provide substantial advantages when compared to a counterpart that treats the predictive and prescriptive models separately, it has also been shown to struggle in high-dimensional and risk-sensitive settings, limiting its applicability in real-world settings. To address this limitation, this paper introduces decision-focused generative learning (Gen-DFL), a novel framework that leverages generative models to adaptively model uncertainty and improve decision quality. Instead of relying on fixed uncertainty sets, Gen-DFL learns a structured representation of the optimization parameters and samples from the tail regions of the learned distribution to enhance robustness against worst-case scenarios. This approach mitigates over-conservatism while capturing complex dependencies in the parameter space. The paper shows, theoretically, that Gen-DFL achieves improved worst-case performance bounds compared to traditional DFL. Empirically, it evaluates Gen-DFL on various scheduling and logistics problems, demonstrating its strong performance against existing DFL methods.


Counterfactual Fairness through Transforming Data Orthogonal to Bias

arXiv.org Machine Learning

Machine learning models have shown exceptional prowess in solving complex issues across various domains. Nonetheless, these models can sometimes exhibit biased decision-making, leading to disparities in treatment across different groups. Despite the extensive research on fairness, the nuanced effects of multivariate and continuous sensitive variables on decision-making outcomes remain insufficiently studied. We introduce a novel data pre-processing algorithm, Orthogonal to Bias (OB), designed to remove the influence of a group of continuous sensitive variables, thereby facilitating counterfactual fairness in machine learning applications. Our approach is grounded in the assumption of a jointly normal distribution within a structural causal model (SCM), proving that counterfactual fairness can be achieved by ensuring the data is uncorrelated with sensitive variables. The OB algorithm is model-agnostic, catering to a wide array of machine learning models and tasks, and includes a sparse variant to enhance numerical stability through regularization. Through empirical evaluation on simulated and real-world datasets - including the adult income and the COMPAS recidivism datasets - our methodology demonstrates its capacity to enable fairer outcomes without compromising accuracy.


RIS-Based On-the-Air Semantic Communications -- a Diffractional Deep Neural Network Approach

arXiv.org Artificial Intelligence

Semantic communication has gained significant attention recently due to its advantages in achieving higher transmission efficiency by focusing on semantic information instead of bit-level information. However, current AI-based semantic communication methods require digital hardware for implementation. With the rapid advancement on reconfigurable intelligence surfaces (RISs), a new approach called on-the-air diffractional deep neural networks (D$^2$NN) can be utilized to enable semantic communications on the wave domain. This paper proposes a new paradigm of RIS-based on-the-air semantic communications, where the computational process occurs inherently as wireless signals pass through RISs. We present the system model and discuss the data and control flows of this scheme, followed by a performance analysis using image transmission as an example. In comparison to traditional hardware-based approaches, RIS-based semantic communications offer appealing features, such as light-speed computation, low computational power requirements, and the ability to handle multiple tasks simultaneously.


API-Assisted Code Generation for Question Answering on Varied Table Structures

arXiv.org Artificial Intelligence

A persistent challenge to table question answering (TableQA) by generating executable programs has been adapting to varied table structures, typically requiring domain-specific logical forms. In response, this paper introduces a unified TableQA framework that: (1) provides a unified representation for structured tables as multi-index Pandas data frames, (2) uses Python as a powerful querying language, and (3) uses few-shot prompting to translate NL questions into Python programs, which are executable on Pandas data frames. Furthermore, to answer complex relational questions with extended program functionality and external knowledge, our framework allows customized APIs that Python programs can call. We experiment with four TableQA datasets that involve tables of different structures -- relational, multi-table, and hierarchical matrix shapes -- and achieve prominent improvements over past state-of-the-art systems. In ablation studies, we (1) show benefits from our multi-index representation and APIs over baselines that use only an LLM, and (2) demonstrate that our approach is modular and can incorporate additional APIs.


Uncertainty-Aware Robust Learning on Noisy Graphs

arXiv.org Artificial Intelligence

Graph neural networks have shown impressive capabilities in solving various graph learning tasks, particularly excelling in node classification. However, their effectiveness can be hindered by the challenges arising from the widespread existence of noisy measurements associated with the topological or nodal information present in real-world graphs. These inaccuracies in observations can corrupt the crucial patterns within the graph data, ultimately resulting in undesirable performance in practical applications. To address these issues, this paper proposes a novel uncertainty-aware graph learning framework motivated by distributionally robust optimization. Specifically, we use a graph neural network-based encoder to embed the node features and find the optimal node embeddings by minimizing the worst-case risk through a minimax formulation. Such an uncertainty-aware learning process leads to improved node representations and a more robust graph predictive model that effectively mitigates the impact of uncertainty arising from data noise. Our experimental result shows that the proposed framework achieves superior predictive performance compared to the state-of-the-art baselines under various noisy settings.


Approach to Learning Generalized Audio Representation Through Batch Embedding Covariance Regularization and Constant-Q Transforms

arXiv.org Artificial Intelligence

General-purpose embedding is highly desirable for few-shot even zero-shot learning in many application scenarios, including the audio tasks. In order to understand representations better, we conducted thorough error analysis and visualization of HEAR 2021 submission results. Inspired by the analysis, this work experiments with different front-end audio preprocessing methods, including Constant-Q Transform (CQT) and Short-time Fourier transform (STFT), and proposes a Batch Embedding Covariance Regularization (BECR) term to uncover a more holistic simulation of the frequency information received by the human auditory system. We tested the models on the suite of HEAR 2021 tasks, which encompass a broad category of tasks. Preliminary results show (1) the proposed BECR can incur a more dispersed embedding on the test set, (2) BECR improves the PaSST model without extra computation complexity, and (3) STFT preprocessing outperforms CQT in all tasks we tested.