Chen, Peter Yichen
Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction
Chen, Peter Yichen, Liu, Chao, Ma, Pingchuan, Eastman, John, Rus, Daniela, Randle, Dylan, Ivanov, Yuri, Matusik, Wojciech
Differentiable simulation has become a powerful tool for system identification. While prior work has focused on identifying robot properties using robot-specific data or object properties using object-specific data, our approach calibrates object properties by using information from the robot, without relying on data from the object itself. Specifically, we utilize robot joint encoder information, which is commonly available in standard robotic systems. Our key observation is that by analyzing the robot's reactions to manipulated objects, we can infer properties of those objects, such as inertia and softness. Leveraging this insight, we develop differentiable simulations of robot-object interactions to inversely identify the properties of the manipulated objects. Our approach relies solely on proprioception -- the robot's internal sensing capabilities -- and does not require external measurement tools or vision-based tracking systems. This general method is applicable to any articulated robot and requires only joint position information. We demonstrate the effectiveness of our method on a low-cost robotic platform, achieving accurate mass and elastic modulus estimations of manipulated objects with just a few seconds of computation on a laptop.
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
Viswanath, Hrishikesh, Chang, Yue, Berner, Julius, Chen, Peter Yichen, Bera, Aniket
We present a neural operator architecture to simulate Lagrangian dynamics, such as fluid flow, granular flows, and elastoplasticity. Traditional numerical methods, such as the finite element method (FEM), suffer from long run times and large memory consumption. On the other hand, approaches based on graph neural networks are faster but still suffer from long computation times on dense graphs, which are often required for high-fidelity simulations. Our model, GIOROM or Graph Interaction Operator for Reduced-Order Modeling, learns temporal dynamics within a reduced-order setting, capturing spatial features from a highly sparse graph representation of the input and generalizing to arbitrary spatial locations during inference. The model is geometry-aware and discretization-agnostic and can generalize to different initial conditions, velocities, and geometries after training. We show that point clouds of the order of 100,000 points can be inferred from sparse graphs with $\sim$1000 points, with negligible change in computation time. We empirically evaluate our model on elastic solids, Newtonian fluids, Non-Newtonian fluids, Drucker-Prager granular flows, and von Mises elastoplasticity. On these benchmarks, our approach results in a 25$\times$ speedup compared to other neural network-based physics simulators while delivering high-fidelity predictions of complex physical systems and showing better performance on most benchmarks. The code and the demos are provided at https://github.com/HrishikeshVish/GIOROM.
Neural Stress Fields for Reduced-order Elastoplasticity and Fracture
Zong, Zeshun, Li, Xuan, Li, Minchen, Chiaramonte, Maurizio M., Matusik, Wojciech, Grinspun, Eitan, Carlberg, Kevin, Jiang, Chenfanfu, Chen, Peter Yichen
We propose a hybrid neural network and physics framework for reduced-order modeling of elastoplasticity and fracture. State-of-the-art scientific computing models like the Material Point Method (MPM) faithfully simulate large-deformation elastoplasticity and fracture mechanics. However, their long runtime and large memory consumption render them unsuitable for applications constrained by computation time and memory usage, e.g., virtual reality. To overcome these barriers, we propose a reduced-order framework. Our key innovation is training a low-dimensional manifold for the Kirchhoff stress field via an implicit neural representation. This low-dimensional neural stress field (NSF) enables efficient evaluations of stress values and, correspondingly, internal forces at arbitrary spatial locations. In addition, we also train neural deformation and affine fields to build low-dimensional manifolds for the deformation and affine momentum fields. These neural stress, deformation, and affine fields share the same low-dimensional latent space, which uniquely embeds the high-dimensional simulation state. After training, we run new simulations by evolving in this single latent space, which drastically reduces the computation time and memory consumption. Our general continuum-mechanics-based reduced-order framework is applicable to any phenomena governed by the elastodynamics equation. To showcase the versatility of our framework, we simulate a wide range of material behaviors, including elastica, sand, metal, non-Newtonian fluids, fracture, contact, and collision. We demonstrate dimension reduction by up to 100,000X and time savings by up to 10X.
How Can Large Language Models Help Humans in Design and Manufacturing?
Makatura, Liane, Foshey, Michael, Wang, Bohan, HรคhnLein, Felix, Ma, Pingchuan, Deng, Bolei, Tjandrasuwita, Megan, Spielberg, Andrew, Owens, Crystal Elaine, Chen, Peter Yichen, Zhao, Allan, Zhu, Amy, Norton, Wil J, Gu, Edward, Jacob, Joshua, Li, Yifei, Schulz, Adriana, Matusik, Wojciech
Advances in computational design and manufacturing (CDaM) have already permeated and transformed numerous industries, including aerospace, architecture, electronics, dental, and digital media, among others. Nevertheless, the full potential of the CDaM workflow is still limited by a number of barriers, such as the extensive domainspecific knowledge that is often required to use CDaM software packages or integrate CDaM solutions into existing workflows. Generative AI tools such as Large Language Models (LLMs) have the potential to remove these barriers, by expediting the CDaM process and providing an intuitive, unified, and user-friendly interface that connects each stage of the pipeline. However, to date, generative AI and LLMs have predominantly been applied to non-engineering domains. In this study, we show how these tools can also be used to develop new design and manufacturing workflows.
Learning Neural Constitutive Laws From Motion Observations for Generalizable PDE Dynamics
Ma, Pingchuan, Chen, Peter Yichen, Deng, Bolei, Tenenbaum, Joshua B., Du, Tao, Gan, Chuang, Matusik, Wojciech
We propose a hybrid neural network (NN) and PDE approach for learning generalizable PDE dynamics from motion observations. Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and constitutive models (or material models). Without explicit PDE knowledge, these approaches cannot guarantee physical correctness and have limited generalizability. We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned. Instead, constitutive models are particularly suitable for learning due to their data-fitting nature. To this end, we introduce a new framework termed "Neural Constitutive Laws" (NCLaw), which utilizes a network architecture that strictly guarantees standard constitutive priors, including rotation equivariance and undeformed state equilibrium. We embed this network inside a differentiable simulation and train the model by minimizing a loss function based on the difference between the simulation and the motion observation. We validate NCLaw on various large-deformation dynamical systems, ranging from solids to fluids. After training on a single motion trajectory, our method generalizes to new geometries, initial/boundary conditions, temporal ranges, and even multi-physics systems. On these extremely out-of-distribution generalization tasks, NCLaw is orders-of-magnitude more accurate than previous NN approaches. Real-world experiments demonstrate our method's ability to learn constitutive laws from videos.
Implicit Neural Spatial Representations for Time-dependent PDEs
Chen, Honglin, Wu, Rundi, Grinspun, Eitan, Zheng, Changxi, Chen, Peter Yichen
Implicit Neural Spatial Representation (INSR) has emerged as an effective representation of spatially-dependent vector fields. This work explores solving time-dependent PDEs with INSR. Classical PDE solvers introduce both temporal and spatial discretizations. Common spatial discretizations include meshes and meshless point clouds, where each degree-of-freedom corresponds to a location in space. While these explicit spatial correspondences are intuitive to model and understand, these representations are not necessarily optimal for accuracy, memory usage, or adaptivity. Keeping the classical temporal discretization unchanged (e.g., explicit/implicit Euler), we explore INSR as an alternative spatial discretization, where spatial information is implicitly stored in the neural network weights. The network weights then evolve over time via time integration. Our approach does not require any training data generated by existing solvers because our approach is the solver itself. We validate our approach on various PDEs with examples involving large elastic deformations, turbulent fluids, and multi-scale phenomena. While slower to compute than traditional representations, our approach exhibits higher accuracy and lower memory consumption. Whereas classical solvers can dynamically adapt their spatial representation only by resorting to complex remeshing algorithms, our INSR approach is intrinsically adaptive. By tapping into the rich literature of classic time integrators, e.g., operator-splitting schemes, our method enables challenging simulations in contact mechanics and turbulent flows where previous neural-physics approaches struggle. Videos and codes are available on the project page: http://www.cs.columbia.edu/cg/INSR-PDE/
PAC-NeRF: Physics Augmented Continuum Neural Radiance Fields for Geometry-Agnostic System Identification
Li, Xuan, Qiao, Yi-Ling, Chen, Peter Yichen, Jatavallabhula, Krishna Murthy, Lin, Ming, Jiang, Chenfanfu, Gan, Chuang
Existing approaches to system identification (estimating the physical parameters of an object) from videos assume known object geometries. This precludes their applicability in a vast majority of scenes where object geometries are complex or unknown. In this work, we aim to identify parameters characterizing a physical system from a set of multi-view videos without any assumption on object geometry or topology. To this end, we propose "Physics Augmented Continuum Neural Radiance Fields" (PAC-NeRF), to estimate both the unknown geometry and physical parameters of highly dynamic objects from multi-view videos. We design PAC-NeRF to only ever produce physically plausible states by enforcing the neural radiance field to follow the conservation laws of continuum mechanics. For this, we design a hybrid Eulerian-Lagrangian representation of the neural radiance field, i.e., we use the Eulerian grid representation for NeRF density and color fields, while advecting the neural radiance fields via Lagrangian particles. This hybrid Eulerian-Lagrangian representation seamlessly blends efficient neural rendering with the material point method (MPM) for robust differentiable physics simulation. We validate the effectiveness of our proposed framework on geometry and physical parameter estimation over a vast range of materials, including elastic bodies, plasticine, sand, Newtonian and non-Newtonian fluids, and demonstrate significant performance gain on most tasks.
CROM: Continuous Reduced-Order Modeling of PDEs Using Implicit Neural Representations
Chen, Peter Yichen, Xiang, Jinxu, Cho, Dong Heon, Chang, Yue, Pershing, G A, Maia, Henrique Teles, Chiaramonte, Maurizio M., Carlberg, Kevin, Grinspun, Eitan
The long runtime of high-fidelity partial differential equation (PDE) solvers makes them unsuitable for time-critical applications. We propose to accelerate PDE solvers using reduced-order modeling (ROM). Whereas prior ROM approaches reduce the dimensionality of discretized vector fields, our continuous reduced-order modeling (CROM) approach builds a low-dimensional embedding of the continuous vector fields themselves, not their discretization. We represent this reduced manifold using continuously differentiable neural fields, which may train on any and all available numerical solutions of the continuous system, even when they are obtained using diverse methods or discretizations. We validate our approach on an extensive range of PDEs with training data from voxel grids, meshes, and point clouds. Compared to prior discretization-dependent ROM methods, such as linear subspace proper orthogonal decomposition (POD) and nonlinear manifold neural-network-based autoencoders, CROM features higher accuracy, lower memory consumption, dynamically adaptive resolutions, and applicability to any discretization. For equal latent space dimension, CROM exhibits 79$\times$ and 49$\times$ better accuracy, and 39$\times$ and 132$\times$ smaller memory footprint, than POD and autoencoder methods, respectively. Experiments demonstrate 109$\times$ and 89$\times$ wall-clock speedups over unreduced models on CPUs and GPUs, respectively. Videos and codes are available on the project page: https://crom-pde.github.io
Model reduction for the material point method via an implicit neural representation of the deformation map
Chen, Peter Yichen, Chiaramonte, Maurizio M., Grinspun, Eitan, Carlberg, Kevin
This work proposes a model-reduction approach for the material point method on nonlinear manifolds. Our technique approximates the $\textit{kinematics}$ by approximating the deformation map using an implicit neural representation that restricts deformation trajectories to reside on a low-dimensional manifold. By explicitly approximating the deformation map, its spatiotemporal gradients -- in particular the deformation gradient and the velocity -- can be computed via analytical differentiation. In contrast to typical model-reduction techniques that construct a linear or nonlinear manifold to approximate the (finite number of) degrees of freedom characterizing a given spatial discretization, the use of an implicit neural representation enables the proposed method to approximate the $\textit{continuous}$ deformation map. This allows the kinematic approximation to remain agnostic to the discretization. Consequently, the technique supports dynamic discretizations -- including resolution changes -- during the course of the online reduced-order-model simulation. To generate $\textit{dynamics}$ for the generalized coordinates, we propose a family of projection techniques. At each time step, these techniques: (1) Calculate full-space kinematics at quadrature points, (2) Calculate the full-space dynamics for a subset of `sample' material points, and (3) Calculate the reduced-space dynamics by projecting the updated full-space position and velocity onto the low-dimensional manifold and tangent space, respectively. We achieve significant computational speedup via hyper-reduction that ensures all three steps execute on only a small subset of the problem's spatial domain. Large-scale numerical examples with millions of material points illustrate the method's ability to gain an order of magnitude computational-cost saving -- indeed $\textit{real-time simulations}$ -- with negligible errors.