Chen, Mouxiang
Self-Explained Keywords Empower Large Language Models for Code Generation
Fan, Lishui, Chen, Mouxiang, Liu, Zhongxin
Large language models (LLMs) have achieved impressive performance in code generation. However, due to the long-tail distribution of LLMs' training data, low-frequency terms are typically underrepresented in the training process. Consequently, LLMs often misunderstand or overlook problem-specific, low-frequency keywords during code generation, compromising the accuracy of the generated code. To address this, we propose a novel technique named SEK(\textbf{S}elf-\textbf{E}xplained \textbf{K}eywords), which empowers an LLM for better code generation by extracting and explaining the key terms in the problem description with the LLM itself and ranking them based on frequency. Comprehensive experiments across three benchmarks, i.e., HumanEval(+), MBPP(+), and APPS, with five representative LLMs, show that SEK can significantly improve LLMs in code generation, yielding substantial and consistent gains. For instance, SEK improves the Pass@1 of DeepSeek-Coder-V2-Instruct from 85.4\% to 93.3\% on the Humaneval benchmark. Further analysis confirms that SEK enables the LLMs to shift their attention from low-frequency keywords to their corresponding high-frequency counterparts.
Identifiability Matters: Revealing the Hidden Recoverable Condition in Unbiased Learning to Rank
Chen, Mouxiang, Liu, Chenghao, Liu, Zemin, Li, Zhuo, Sun, Jianling
Unbiased Learning to Rank (ULTR) aims to train unbiased ranking models from biased click logs, by explicitly modeling a generation process for user behavior and fitting click data based on examination hypothesis. Previous research found empirically that the true latent relevance is mostly recoverable through perfect click fitting. However, we demonstrate that this is not always achievable, resulting in a significant reduction in ranking performance. This research investigates the conditions under which relevance can be recovered from click data at a foundational level. We initially characterize a ranking model as identifiable if it can recover the true relevance up to a scaling transformation, a criterion sufficient for the pairwise ranking objective. Subsequently, we investigate an equivalent condition for identifiability, articulated as a graph connectivity test problem: the recovery of relevance is feasible if and only if the identifiability graph (IG), derived from the underlying structure of the dataset, is connected. The presence of a disconnected IG may lead to degenerate cases and suboptimal ranking performance. To tackle this challenge, we introduce two methods, namely node intervention and node merging, designed to modify the dataset and restore the connectivity of the IG. Empirical results derived from a simulated dataset and two real-world LTR benchmark datasets not only validate our proposed theorems but also demonstrate the effectiveness of our methods in alleviating data bias when the relevance model is unidentifiable.
JumpCoder: Go Beyond Autoregressive Coder via Online Modification
Chen, Mouxiang, Tian, Hao, Liu, Zhongxin, Ren, Xiaoxue, Sun, Jianling
While existing code large language models (code LLMs) exhibit impressive capabilities in code generation, their autoregressive sequential generation inherently lacks reversibility. This limitation hinders them from timely correcting previous missing statements during coding as humans do, often leading to error propagation and suboptimal performance. We introduce JumpCoder, a novel modelagnostic framework that enables online modification and non-sequential generation to augment the code LLMs. The key idea behind JumpCoder is to insert new code into the currently generated code when necessary during generation, which is achieved through an auxiliary infilling model that works in tandem with the code LLM. Since identifying the best infill position beforehand is intractable, we adopt an infill-first, judge-later strategy, which experiments with filling at the $k$ most critical positions following the generation of each line, and uses an Abstract Syntax Tree (AST) parser alongside the Generation Model Scoring to effectively judge the validity of each potential infill. Extensive experiments using six state-of-the-art code LLMs across multiple benchmarks consistently indicate significant improvements over all baselines. Notably, JumpCoder assists code LLMs in achieving up to a 3.6% increase in Pass@1 for Python, 6.3% for Java, and 3.7% for C++ in the multilingual HumanEval benchmarks. Our code is public at https://github.com/Keytoyze/JumpCoder.
ULTRA-DP: Unifying Graph Pre-training with Multi-task Graph Dual Prompt
Chen, Mouxiang, Liu, Zemin, Liu, Chenghao, Li, Jundong, Mao, Qiheng, Sun, Jianling
Recent research has demonstrated the efficacy of pre-training graph neural networks (GNNs) to capture the transferable graph semantics and enhance the performance of various downstream tasks. However, the semantic knowledge learned from pretext tasks might be unrelated to the downstream task, leading to a semantic gap that limits the application of graph pre-training. To reduce this gap, traditional approaches propose hybrid pre-training to combine various pretext tasks together in a multi-task learning fashion and learn multi-grained knowledge, which, however, cannot distinguish tasks and results in some transferable task-specific knowledge distortion by each other. Moreover, most GNNs cannot distinguish nodes located in different parts of the graph, making them fail to learn position-specific knowledge and lead to suboptimal performance. In this work, inspired by the prompt-based tuning in natural language processing, we propose a unified framework for graph hybrid pre-training which injects the task identification and position identification into GNNs through a prompt mechanism, namely multi-task graph dual prompt (ULTRA-DP). Based on this framework, we propose a prompt-based transferability test to find the most relevant pretext task in order to reduce the semantic gap. To implement the hybrid pre-training tasks, beyond the classical edge prediction task (node-node level), we further propose a novel pre-training paradigm based on a group of $k$-nearest neighbors (node-group level). The combination of them across different scales is able to comprehensively express more structural semantics and derive richer multi-grained knowledge. Extensive experiments show that our proposed ULTRA-DP can significantly enhance the performance of hybrid pre-training methods and show the generalizability to other pre-training tasks and backbone architectures.
Calibration of Time-Series Forecasting Transformers: Detecting and Adapting Context-Driven Distribution Shift
Chen, Mouxiang, Shen, Lefei, Fu, Han, Li, Zhuo, Sun, Jianling, Liu, Chenghao
Recent years have witnessed the success of introducing Transformers to time series forecasting. From a data generation perspective, we illustrate that existing Transformers are susceptible to distribution shifts driven by temporal contexts, whether observed or unobserved. Such context-driven distribution shift (CDS) introduces biases in predictions within specific contexts and poses challenges for conventional training paradigm. In this paper, we introduce a universal calibration methodology for the detection and adaptation of CDS with a trained Transformer model. To this end, we propose a novel CDS detector, termed the "residual-based CDS detector" or "Reconditionor", which quantifies the model's vulnerability to CDS by evaluating the mutual information between prediction residuals and their corresponding contexts. A high Reconditionor score indicates a severe susceptibility, thereby necessitating model adaptation. In this circumstance, we put forth a straightforward yet potent adapter framework for model calibration, termed the "sample-level contextualized adapter" or "SOLID". This framework involves the curation of a contextually similar dataset to the provided test sample and the subsequent fine-tuning of the model's prediction layer with a limited number of steps. Our theoretical analysis demonstrates that this adaptation strategy is able to achieve an optimal equilibrium between bias and variance. Notably, our proposed Reconditionor and SOLID are model-agnostic and readily adaptable to a wide range of Transformers. Extensive experiments show that SOLID consistently enhances the performance of current SOTA Transformers on real-world datasets, especially on cases with substantial CDS detected by the proposed Reconditionor, thus validate the effectiveness of the calibration approach.