Chen, Hongyi
Structure-prior Informed Diffusion Model for Graph Source Localization with Limited Data
Chen, Hongyi, Ding, Jingtao, Liang, Xiaojun, Li, Yong, Zhang, Xiao-Ping
The source localization problem in graph information propagation is crucial for managing various network disruptions, from misinformation spread to infrastructure failures. While recent deep generative approaches have shown promise in this domain, their effectiveness is limited by the scarcity of real-world propagation data. This paper introduces SIDSL (\textbf{S}tructure-prior \textbf{I}nformed \textbf{D}iffusion model for \textbf{S}ource \textbf{L}ocalization), a novel framework that addresses three key challenges in limited-data scenarios: unknown propagation patterns, complex topology-propagation relationships, and class imbalance between source and non-source nodes. SIDSL incorporates topology-aware priors through graph label propagation and employs a propagation-enhanced conditional denoiser with a GNN-parameterized label propagation module (GNN-LP). Additionally, we propose a structure-prior biased denoising scheme that initializes from structure-based source estimations rather than random noise, effectively countering class imbalance issues. Experimental results across four real-world datasets demonstrate SIDSL's superior performance, achieving 7.5-13.3% improvements in F1 scores compared to state-of-the-art methods. Notably, when pretrained with simulation data of synthetic patterns, SIDSL maintains robust performance with only 10% of training data, surpassing baselines by more than 18.8%. These results highlight SIDSL's effectiveness in real-world applications where labeled data is scarce.
Sample-efficient diffusion-based control of complex nonlinear systems
Chen, Hongyi, Ding, Jingtao, Shu, Jianhai, Yu, Xinchun, Liang, Xiaojun, Li, Yong, Zhang, Xiao-Ping
Complex nonlinear system control faces challenges in achieving sample-efficient, reliable performance. While diffusion-based methods have demonstrated advantages over classical and reinforcement learning approaches in long-term control performance, they are limited by sample efficiency. This paper presents SEDC (Sample-Efficient Diffusion-based Control), a novel diffusion-based control framework addressing three core challenges: high-dimensional state-action spaces, nonlinear system dynamics, and the gap between non-optimal training data and near-optimal control solutions. Through three innovations - Decoupled State Diffusion, Dual-Mode Decomposition, and Guided Self-finetuning - SEDC achieves 39.5\%-49.4\% better control accuracy than baselines while using only 10\% of the training samples, as validated across three complex nonlinear dynamic systems. Our approach represents a significant advancement in sample-efficient control of complex nonlinear systems. The implementation of the code can be found at https://anonymous.4open.science/r/DIFOCON-C019.
MCSFF: Multi-modal Consistency and Specificity Fusion Framework for Entity Alignment
Ai, Wei, Deng, Wen, Chen, Hongyi, Du, Jiayi, Meng, Tao, Shou, Yuntao
Multi-modal entity alignment (MMEA) is essential for enhancing knowledge graphs and improving information retrieval and question-answering systems. Existing methods often focus on integrating modalities through their complementarity but overlook the specificity of each modality, which can obscure crucial features and reduce alignment accuracy. To solve this, we propose the Multi-modal Consistency and Specificity Fusion Framework (MCSFF), which innovatively integrates both complementary and specific aspects of modalities. We utilize Scale Computing's hyper-converged infrastructure to optimize IT management and resource allocation in large-scale data processing. Our framework first computes similarity matrices for each modality using modality embeddings to preserve their unique characteristics. Then, an iterative update method denoises and enhances modality features to fully express critical information. Finally, we integrate the updated information from all modalities to create enriched and precise entity representations. Experiments show our method outperforms current state-of-the-art MMEA baselines on the MMKG dataset, demonstrating its effectiveness and practical potential.
Artificial Intelligence for Complex Network: Potential, Methodology and Application
Ding, Jingtao, Liu, Chang, Zheng, Yu, Zhang, Yunke, Yu, Zihan, Li, Ruikun, Chen, Hongyi, Piao, Jinghua, Wang, Huandong, Liu, Jiazhen, Li, Yong
For example, cells are described as complex networks of chemicals linked by chemical reactions [7]; ecological networks link populations together through food chains [64]; and the World Wide Web is a vast virtual network of web pages and hyperlinks [47]. These complex networks are just a few of many examples. The local microscopic behavior of these complex networks often shows disorder. However, at the macroscopic scale, they show simple and even symmetrical structures. In order to understand the transition and evolution of complex systems from microscopic disorder to macroscopic order, current complex network studies mainly fall into the following paradigm: the combination of graph theory and statistical mechanics [3]. They construct the core principle of complex network science, that is, simple random rules and network dynamics together drive the emergence of non-trivial topological structures. Early works mainly focused on the topology of the interactions between the components, i.e., the birth-death process of edges on the graph. The two representative works, the Watts-Strogatz (WS) model and the scale-free model [11, 252], embody this principle and successfully generate graphs that approach real-world complex networks with high clustering coefficients and small average paths or power-law degree distribution. Despite their success in certain domains [17, 221, 222, 235], they do not provide a way to model the dynamics of the nodes, i.e., the change in the node's features.
Social Physics Informed Diffusion Model for Crowd Simulation
Chen, Hongyi, Ding, Jingtao, Li, Yong, Wang, Yue, Zhang, Xiao-Ping
Crowd simulation holds crucial applications in various domains, such as urban planning, architectural design, and traffic arrangement. In recent years, physics-informed machine learning methods have achieved state-of-the-art performance in crowd simulation but fail to model the heterogeneity and multi-modality of human movement comprehensively. In this paper, we propose a social physics-informed diffusion model named SPDiff to mitigate the above gap. SPDiff takes both the interactive and historical information of crowds in the current timeframe to reverse the diffusion process, thereby generating the distribution of pedestrian movement in the subsequent timeframe. Inspired by the well-known social physics model, i.e., Social Force, regarding crowd dynamics, we design a crowd interaction module to guide the denoising process and further enhance this module with the equivariant properties of crowd interactions. To mitigate error accumulation in long-term simulations, we propose a multi-frame rollout training algorithm for diffusion modeling. Experiments conducted on two real-world datasets demonstrate the superior performance of SPDiff in terms of macroscopic and microscopic evaluation metrics. Code and appendix are available at https://github.com/tsinghua-fib-lab/SPDiff.
KGNv2: Separating Scale and Pose Prediction for Keypoint-based 6-DoF Grasp Synthesis on RGB-D input
Chen, Yiye, Xu, Ruinian, Lin, Yunzhi, Chen, Hongyi, Vela, Patricio A.
We propose a new 6-DoF grasp pose synthesis approach from 2D/2.5D input based on keypoints. Keypoint-based grasp detector from image input has demonstrated promising results in the previous study, where the additional visual information provided by color images compensates for the noisy depth perception. However, it relies heavily on accurately predicting the location of keypoints in the image space. In this paper, we devise a new grasp generation network that reduces the dependency on precise keypoint estimation. Given an RGB-D input, our network estimates both the grasp pose from keypoint detection as well as scale towards the camera. We further re-design the keypoint output space in order to mitigate the negative impact of keypoint prediction noise to Perspective-n-Point (PnP) algorithm. Experiments show that the proposed method outperforms the baseline by a large margin, validating the efficacy of our approach. Finally, despite trained on simple synthetic objects, our method demonstrate sim-to-real capacity by showing competitive results in real-world robot experiments.
Planning with Sequence Models through Iterative Energy Minimization
Chen, Hongyi, Du, Yilun, Chen, Yiye, Tenenbaum, Joshua, Vela, Patricio A.
Recent works have shown that sequence modeling can be effectively used to train reinforcement learning (RL) policies. However, the success of applying existing sequence models to planning, in which we wish to obtain a trajectory of actions to reach some goal, is less straightforward. The typical autoregressive generation procedures of sequence models preclude sequential refinement of earlier steps, which limits the effectiveness of a predicted plan. In this paper, we suggest an approach towards integrating planning with sequence models based on the idea of iterative energy minimization, and illustrate how such a procedure leads to improved RL performance across different tasks. We train a masked language model to capture an implicit energy function over trajectories of actions, and formulate planning as finding a trajectory of actions with minimum energy. We illustrate how this procedure enables improved performance over recent approaches across BabyAI and Atari environments. We further demonstrate unique benefits of our iterative optimization procedure, involving new task generalization, test-time constraints adaptation, and the ability to compose plans together. Project website: https://hychen-naza.github.io/projects/LEAP
Safe Hierarchical Navigation in Crowded Dynamic Uncertain Environments
Chen, Hongyi, Feng, Shiyu, Zhao, Ye, Liu, Changliu, Vela, Patricio A.
This paper describes a hierarchical solution consisting of a multi-phase planner and a low-level safe controller to jointly solve the safe navigation problem in crowded, dynamic, and uncertain environments. The planner employs dynamic gap analysis and trajectory optimization to achieve collision avoidance with respect to the predicted trajectories of dynamic agents within the sensing and planning horizon and with robustness to agent uncertainty. To address uncertainty over the planning horizon and real-time safety, a fast reactive safe set algorithm (SSA) is adopted, which monitors and modifies the unsafe control during trajectory tracking. Compared to other existing methods, our approach offers theoretical guarantees of safety and achieves collision-free navigation with higher probability in uncertain environments, as demonstrated in scenarios with 20 and 50 dynamic agents. Project website: https://hychen-naza.github.io/projects/HDAGap/.
Safe and Sample-efficient Reinforcement Learning for Clustered Dynamic Environments
Chen, Hongyi, Liu, Changliu
This study proposes a safe and sample-efficient reinforcement learning (RL) framework to address two major challenges in developing applicable RL algorithms: satisfying safety constraints and efficiently learning with limited samples. To guarantee safety in real-world complex environments, we use the safe set algorithm (SSA) to monitor and modify the nominal controls, and evaluate SSA+RL in a clustered dynamic environment which is challenging to be solved by existing RL algorithms. However, the SSA+RL framework is usually not sample-efficient especially in reward-sparse environments, which has not been addressed in previous safe RL works. To improve the learning efficiency, we propose three techniques: (1) avoiding behaving overly conservative by adapting the SSA; (2) encouraging safe exploration using random network distillation with safety constraints; (3) improving policy convergence by treating SSA as expert demonstrations and directly learn from that. The experimental results show that our framework can achieve better safety performance compare to other safe RL methods during training and solve the task with substantially fewer episodes. Project website: https://hychen-naza.github.io/projects/Safe_RL/.
Zero-Shot Object Searching Using Large-scale Object Relationship Prior
Chen, Hongyi, Xu, Ruinian, Cheng, Shuo, Vela, Patricio A., Xu, Danfei
Home-assistant robots have been a long-standing research topic, and one of the biggest challenges is searching for required objects in housing environments. Previous object-goal navigation requires the robot to search for a target object category in an unexplored environment, which may not be suitable for home-assistant robots that typically have some level of semantic knowledge of the environment, such as the location of static furniture. In our approach, we leverage this knowledge and the fact that a target object may be located close to its related objects for efficient navigation. To achieve this, we train a graph neural network using the Visual Genome dataset to learn the object co-occurrence relationships and formulate the searching process as iteratively predicting the possible areas where the target object may be located. This approach is entirely zero-shot, meaning it doesn't require new accurate object correlation in the test environment. We empirically show that our method outperforms prior correlational object search algorithms. As our ultimate goal is to build fully autonomous assistant robots for everyday use, we further integrate the task planner for parsing natural language and generating task-completing plans with object navigation to execute human instructions. We demonstrate the effectiveness of our proposed pipeline in both the AI2-THOR simulator and a Stretch robot in a real-world environment.