Goto

Collaborating Authors

 Chen, Enhong


Detect, Investigate, Judge and Determine: A Novel LLM-based Framework for Few-shot Fake News Detection

arXiv.org Artificial Intelligence

Few-Shot Fake News Detection (FS-FND) aims to distinguish inaccurate news from real ones in extremely low-resource scenarios. This task has garnered increased attention due to the widespread dissemination and harmful impact of fake news on social media. Large Language Models (LLMs) have demonstrated competitive performance with the help of their rich prior knowledge and excellent in-context learning abilities. However, existing methods face significant limitations, such as the Understanding Ambiguity and Information Scarcity, which significantly undermine the potential of LLMs. To address these shortcomings, we propose a Dual-perspective Augmented Fake News Detection (DAFND) model, designed to enhance LLMs from both inside and outside perspectives. Specifically, DAFND first identifies the keywords of each news article through a Detection Module. Subsequently, DAFND creatively designs an Investigation Module to retrieve inside and outside valuable information concerning to the current news, followed by another Judge Module to derive its respective two prediction results. Finally, a Determination Module further integrates these two predictions and derives the final result. Extensive experiments on two publicly available datasets show the efficacy of our proposed method, particularly in low-resource settings.


Entropy Law: The Story Behind Data Compression and LLM Performance

arXiv.org Artificial Intelligence

Data is the cornerstone of large language models (LLMs), but not all data is useful for model learning. Carefully selected data can better elicit the capabilities of LLMs with much less computational overhead. Most methods concentrate on evaluating the quality of individual samples in data selection, while the combinatorial effects among samples are neglected. Even if each sample is of perfect quality, their combinations may be suboptimal in teaching LLMs due to their intrinsic homogeneity or contradiction. In this paper, we aim to uncover the underlying relationships between LLM performance and data selection. Inspired by the information compression nature of LLMs, we uncover an ``entropy law'' that connects LLM performance with data compression ratio and first-epoch training loss, which reflect the information redundancy of a dataset and the mastery of inherent knowledge encoded in this dataset, respectively. Through both theoretical deduction and empirical evaluation, we find that model performance is negatively correlated to the compression ratio of training data, which usually yields a lower training loss. Based on the findings of the entropy law, we propose a quite efficient and universal data selection method named \textbf{ZIP} for training LLMs, which aim to prioritize data subsets exhibiting a low compression ratio. Based on a multi-stage algorithm that selects diverse data in a greedy manner, we can obtain a good data subset with satisfactory diversity. Extensive experiments have been conducted to validate the entropy law and the superiority of ZIP across different LLM backbones and alignment stages. We also present an interesting application of entropy law that can detect potential performance risks at the beginning of model training.


Knowledge Graph Pruning for Recommendation

arXiv.org Artificial Intelligence

Recent years have witnessed the prosperity of knowledge graph based recommendation system (KGRS), which enriches the representation of users, items, and entities by structural knowledge with striking improvement. Nevertheless, its unaffordable computational cost still limits researchers from exploring more sophisticated models. We observe that the bottleneck for training efficiency arises from the knowledge graph, which is plagued by the well-known issue of knowledge explosion. Recently, some works have attempted to slim the inflated KG via summarization techniques. However, these summarized nodes may ignore the collaborative signals and deviate from the facts that nodes in knowledge graph represent symbolic abstractions of entities from the real-world. To this end, in this paper, we propose a novel approach called KGTrimmer for knowledge graph pruning tailored for recommendation, to remove the unessential nodes while minimizing performance degradation. Specifically, we design an importance evaluator from a dual-view perspective. For the collective view, we embrace the idea of collective intelligence by extracting community consensus based on abundant collaborative signals, i.e. nodes are considered important if they attract attention of numerous users. For the holistic view, we learn a global mask to identify the valueless nodes from their inherent properties or overall popularity. Next, we build an end-to-end importance-aware graph neural network, which injects filtered knowledge to enhance the distillation of valuable user-item collaborative signals. Ultimately, we generate a pruned knowledge graph with lightweight, stable, and robust properties to facilitate the following-up recommendation task. Extensive experiments are conducted on three publicly available datasets to prove the effectiveness and generalization ability of KGTrimmer.


A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions

arXiv.org Artificial Intelligence

Cognitive diagnosis has been developed for decades as an effective measurement tool to evaluate human cognitive status such as ability level and knowledge mastery. It has been applied to a wide range of fields including education, sport, psychological diagnosis, etc. By providing better awareness of cognitive status, it can serve as the basis for personalized services such as well-designed medical treatment, teaching strategy and vocational training. This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods. By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models. Further, we discuss future directions that are worthy of exploration. In addition, we release two Python libraries: EduData for easy access to some relevant public datasets we have collected, and EduCDM that implements popular CDMs to facilitate both applications and research purposes.


Foundations and Frontiers of Graph Learning Theory

arXiv.org Artificial Intelligence

Recent advancements in graph learning have revolutionized the way to understand and analyze data with complex structures. Notably, Graph Neural Networks (GNNs), i.e. neural network architectures designed for learning graph representations, have become a popular paradigm. With these models being usually characterized by intuition-driven design or highly intricate components, placing them within the theoretical analysis framework to distill the core concepts, helps understand the key principles that drive the functionality better and guide further development. Given this surge in interest, this article provides a comprehensive summary of the theoretical foundations and breakthroughs concerning the approximation and learning behaviors intrinsic to prevalent graph learning models. Encompassing discussions on fundamental aspects such as expressiveness power, generalization, optimization, and unique phenomena such as over-smoothing and over-squashing, this piece delves into the theoretical foundations and frontier driving the evolution of graph learning. In addition, this article also presents several challenges and further initiates discussions on possible solutions.


Retrieve-Plan-Generation: An Iterative Planning and Answering Framework for Knowledge-Intensive LLM Generation

arXiv.org Artificial Intelligence

Despite the significant progress of large language models (LLMs) in various tasks, they often produce factual errors due to their limited internal knowledge. Retrieval-Augmented Generation (RAG), which enhances LLMs with external knowledge sources, offers a promising solution. However, these methods can be misled by irrelevant paragraphs in retrieved documents. Due to the inherent uncertainty in LLM generation, inputting the entire document may introduce off-topic information, causing the model to deviate from the central topic and affecting the relevance of the generated content. To address these issues, we propose the Retrieve-Plan-Generation (RPG) framework. RPG generates plan tokens to guide subsequent generation in the plan stage. In the answer stage, the model selects relevant fine-grained paragraphs based on the plan and uses them for further answer generation. This plan-answer process is repeated iteratively until completion, enhancing generation relevance by focusing on specific topics. To implement this framework efficiently, we utilize a simple but effective multi-task prompt-tuning method, enabling the existing LLMs to handle both planning and answering. We comprehensively compare RPG with baselines across 5 knowledge-intensive generation tasks, demonstrating the effectiveness of our approach.


In-Context Former: Lightning-fast Compressing Context for Large Language Model

arXiv.org Artificial Intelligence

With the rising popularity of Transformer-based large language models (LLMs), reducing their high inference costs has become a significant research focus. One effective approach is to compress the long input contexts. Existing methods typically leverage the self-attention mechanism of the LLM itself for context compression. While these methods have achieved notable results, the compression process still involves quadratic time complexity, which limits their applicability. To mitigate this limitation, we propose the In-Context Former (IC-Former). Unlike previous methods, IC-Former does not depend on the target LLMs. Instead, it leverages the cross-attention mechanism and a small number of learnable digest tokens to directly condense information from the contextual word embeddings. This approach significantly reduces inference time, which achieves linear growth in time complexity within the compression range. Experimental results indicate that our method requires only 1/32 of the floating-point operations of the baseline during compression and improves processing speed by 68 to 112 times while achieving over 90% of the baseline performance on evaluation metrics. Overall, our model effectively reduces compression costs and makes real-time compression scenarios feasible.


Video-MME: The First-Ever Comprehensive Evaluation Benchmark of Multi-modal LLMs in Video Analysis

arXiv.org Artificial Intelligence

In the quest for artificial general intelligence, Multi-modal Large Language Models (MLLMs) have emerged as a focal point in recent advancements. However, the predominant focus remains on developing their capabilities in static image understanding. The potential of MLLMs in processing sequential visual data is still insufficiently explored, highlighting the absence of a comprehensive, high-quality assessment of their performance. In this paper, we introduce Video-MME, the first-ever full-spectrum, Multi-Modal Evaluation benchmark of MLLMs in Video analysis. Our work distinguishes from existing benchmarks through four key features: 1) Diversity in video types, spanning 6 primary visual domains with 30 subfields to ensure broad scenario generalizability; 2) Duration in temporal dimension, encompassing both short-, medium-, and long-term videos, ranging from 11 seconds to 1 hour, for robust contextual dynamics; 3) Breadth in data modalities, integrating multi-modal inputs besides video frames, including subtitles and audios, to unveil the all-round capabilities of MLLMs; 4) Quality in annotations, utilizing rigorous manual labeling by expert annotators to facilitate precise and reliable model assessment. 900 videos with a total of 254 hours are manually selected and annotated by repeatedly viewing all the video content, resulting in 2,700 question-answer pairs. With Video-MME, we extensively evaluate various state-of-the-art MLLMs, including GPT-4 series and Gemini 1.5 Pro, as well as open-source image models like InternVL-Chat-V1.5 and video models like LLaVA-NeXT-Video. Our experiments reveal that Gemini 1.5 Pro is the best-performing commercial model, significantly outperforming the open-source models. Our dataset along with these findings underscores the need for further improvements in handling longer sequences and multi-modal data. Project Page: https://video-mme.github.io


From a Social Cognitive Perspective: Context-aware Visual Social Relationship Recognition

arXiv.org Artificial Intelligence

People's social relationships are often manifested through their surroundings, with certain objects or interactions acting as symbols for specific relationships, e.g., wedding rings, roses, hugs, or holding hands. This brings unique challenges to recognizing social relationships, requiring understanding and capturing the essence of these contexts from visual appearances. However, current methods of social relationship understanding rely on the basic classification paradigm of detected persons and objects, which fails to understand the comprehensive context and often overlooks decisive social factors, especially subtle visual cues. To highlight the social-aware context and intricate details, we propose a novel approach that recognizes \textbf{Con}textual \textbf{So}cial \textbf{R}elationships (\textbf{ConSoR}) from a social cognitive perspective. Specifically, to incorporate social-aware semantics, we build a lightweight adapter upon the frozen CLIP to learn social concepts via our novel multi-modal side adapter tuning mechanism. Further, we construct social-aware descriptive language prompts (e.g., scene, activity, objects, emotions) with social relationships for each image, and then compel ConSoR to concentrate more intensively on the decisive visual social factors via visual-linguistic contrasting. Impressively, ConSoR outperforms previous methods with a 12.2\% gain on the People-in-Social-Context (PISC) dataset and a 9.8\% increase on the People-in-Photo-Album (PIPA) benchmark. Furthermore, we observe that ConSoR excels at finding critical visual evidence to reveal social relationships.


Exploring User Retrieval Integration towards Large Language Models for Cross-Domain Sequential Recommendation

arXiv.org Artificial Intelligence

Cross-Domain Sequential Recommendation (CDSR) aims to mine and transfer users' sequential preferences across different domains to alleviate the long-standing cold-start issue. Traditional CDSR models capture collaborative information through user and item modeling while overlooking valuable semantic information. Recently, Large Language Model (LLM) has demonstrated powerful semantic reasoning capabilities, motivating us to introduce them to better capture semantic information. However, introducing LLMs to CDSR is non-trivial due to two crucial issues: seamless information integration and domain-specific generation. To this end, we propose a novel framework named URLLM, which aims to improve the CDSR performance by exploring the User Retrieval approach and domain grounding on LLM simultaneously. Specifically, we first present a novel dual-graph sequential model to capture the diverse information, along with an alignment and contrastive learning method to facilitate domain knowledge transfer. Subsequently, a user retrieve-generation model is adopted to seamlessly integrate the structural information into LLM, fully harnessing its emergent inferencing ability. Furthermore, we propose a domain-specific strategy and a refinement module to prevent out-of-domain generation. Extensive experiments on Amazon demonstrated the information integration and domain-specific generation ability of URLLM in comparison to state-of-the-art baselines. Our code is available at https://github.com/TingJShen/URLLM