Goto

Collaborating Authors

 Chen, Enhong


A Survey on Knowledge-Oriented Retrieval-Augmented Generation

arXiv.org Artificial Intelligence

Retrieval-Augmented Generation (RAG) has gained significant attention in recent years for its potential to enhance natural language understanding and generation by combining large-scale retrieval systems with generative models. RAG leverages external knowledge sources, such as documents, databases, or structured data, to improve model performance and generate more accurate and contextually relevant outputs. This survey aims to provide a comprehensive overview of RAG by examining its fundamental components, including retrieval mechanisms, generation processes, and the integration between the two. We discuss the key characteristics of RAG, such as its ability to augment generative models with dynamic external knowledge, and the challenges associated with aligning retrieved information with generative objectives. We also present a taxonomy that categorizes RAG methods, ranging from basic retrieval-augmented approaches to more advanced models incorporating multi-modal data and reasoning capabilities. Additionally, we review the evaluation benchmarks and datasets commonly used to assess RAG systems, along with a detailed exploration of its applications in fields such as question answering, summarization, and information retrieval. Finally, we highlight emerging research directions and opportunities for improving RAG systems, such as enhanced retrieval efficiency, model interpretability, and domain-specific adaptations. This paper concludes by outlining the prospects for RAG in addressing real-world challenges and its potential to drive further advancements in natural language processing.


ImageScope: Unifying Language-Guided Image Retrieval via Large Multimodal Model Collective Reasoning

arXiv.org Artificial Intelligence

With the proliferation of images in online content, language-guided image retrieval (LGIR) has emerged as a research hotspot over the past decade, encompassing a variety of subtasks with diverse input forms. While the development of large multimodal models (LMMs) has significantly facilitated these tasks, existing approaches often address them in isolation, requiring the construction of separate systems for each task. This not only increases system complexity and maintenance costs, but also exacerbates challenges stemming from language ambiguity and complex image content, making it difficult for retrieval systems to provide accurate and reliable results. To this end, we propose ImageScope, a training-free, three-stage framework that leverages collective reasoning to unify LGIR tasks. The key insight behind the unification lies in the compositional nature of language, which transforms diverse LGIR tasks into a generalized text-to-image retrieval process, along with the reasoning of LMMs serving as a universal verification to refine the results. To be specific, in the first stage, we improve the robustness of the framework by synthesizing search intents across varying levels of semantic granularity using chain-of-thought (CoT) reasoning. In the second and third stages, we then reflect on retrieval results by verifying predicate propositions locally, and performing pairwise evaluations globally. Experiments conducted on six LGIR datasets demonstrate that ImageScope outperforms competitive baselines. Comprehensive evaluations and ablation studies further confirm the effectiveness of our design.


RAPID: Efficient Retrieval-Augmented Long Text Generation with Writing Planning and Information Discovery

arXiv.org Artificial Intelligence

Generating knowledge-intensive and comprehensive long texts, such as encyclopedia articles, remains significant challenges for Large Language Models. It requires not only the precise integration of facts but also the maintenance of thematic coherence throughout the article. Existing methods, such as direct generation and multi-agent discussion, often struggle with issues like hallucinations, topic incoherence, and significant latency. To address these challenges, we propose RAPID, an efficient retrieval-augmented long text generation framework. RAPID consists of three main modules: (1) Retrieval-augmented preliminary outline generation to reduce hallucinations, (2) Attribute-constrained search for efficient information discovery, (3) Plan-guided article generation for enhanced coherence. Extensive experiments on our newly compiled benchmark dataset, FreshWiki-2024, demonstrate that RAPID significantly outperforms state-of-the-art methods across a wide range of evaluation metrics (e.g. long-text generation, outline quality, latency, etc). Our work provides a robust and efficient solution to the challenges of automated long-text generation.


Learning to Substitute Components for Compositional Generalization

arXiv.org Artificial Intelligence

Despite the rising prevalence of neural language models, recent empirical evidence suggests their deficiency in compositional generalization. One of the current de-facto solutions to this problem is compositional data augmentation, which aims to introduce additional compositional inductive bias. However, existing handcrafted augmentation strategies offer limited improvement when systematic generalization of neural language models requires multi-grained compositional bias (i.e., not limited to either lexical or structural biases alone) or when training sentences have an imbalanced difficulty distribution. To address these challenges, we first propose a novel compositional augmentation strategy called Component Substitution (CompSub), which enables multi-grained composition of substantial substructures across the entire training set. Furthermore, we introduce the Learning Component Substitution (LCS) framework. This framework empowers the learning of component substitution probabilities in CompSub in an end-to-end manner by maximizing the loss of neural language models, thereby prioritizing challenging compositions with elusive concepts and novel contexts. We extend the key ideas of CompSub and LCS to the recently emerging in-context learning scenarios of pre-trained large language models (LLMs), proposing the LCS-ICL algorithm to enhance the few-shot compositional generalization of state-of-the-art (SOTA) LLMs. Theoretically, we provide insights into why applying our algorithms to language models can improve compositional generalization performance. Empirically, our results on four standard compositional generalization benchmarks(SCAN, COGS, GeoQuery, and COGS-QL) demonstrate the superiority of CompSub, LCS, and LCS-ICL, with improvements of up to 66.5%, 10.3%, 1.4%, and 8.8%, respectively.


Unveiling the Magic of Code Reasoning through Hypothesis Decomposition and Amendment

arXiv.org Artificial Intelligence

The reasoning abilities are one of the most enigmatic and captivating aspects of large language models (LLMs). Numerous studies are dedicated to exploring and expanding the boundaries of this reasoning capability. However, tasks that embody both reasoning and recall characteristics are often overlooked. In this paper, we introduce such a novel task, code reasoning, to provide a new perspective for the reasoning abilities of LLMs. We summarize three meta-benchmarks based on established forms of logical reasoning, and instantiate these into eight specific benchmark tasks. Our testing on these benchmarks reveals that LLMs continue to struggle with identifying satisfactory reasoning pathways. Additionally, we present a new pathway exploration pipeline inspired by human intricate problem-solving methods. This Reflective Hypothesis Decomposition and Amendment (RHDA) pipeline consists of the following iterative steps: (1) Proposing potential hypotheses based on observations and decomposing them; (2) Utilizing tools to validate hypotheses and reflection outcomes; (3) Revising hypothesis in light of observations. Our approach effectively mitigates logical chain collapses arising from forgetting or hallucination issues in multi-step reasoning, resulting in performance gains of up to $3\times$. Finally, we expanded this pipeline by applying it to simulate complex household tasks in real-world scenarios, specifically in VirtualHome, enhancing the handling of failure cases. We release our code and all of results at https://github.com/TnTWoW/code_reasoning.


Refining Sentence Embedding Model through Ranking Sentences Generation with Large Language Models

arXiv.org Artificial Intelligence

Sentence embedding is essential for many NLP tasks, with contrastive learning methods achieving strong performance using annotated datasets like NLI. Yet, the reliance on manual labels limits scalability. Recent studies leverage large language models (LLMs) to generate sentence pairs, reducing annotation dependency. However, they overlook ranking information crucial for fine-grained semantic distinctions. To tackle this challenge, we propose a method for controlling the generation direction of LLMs in the latent space. Unlike unconstrained generation, the controlled approach ensures meaningful semantic divergence. Then, we refine exist sentence embedding model by integrating ranking information and semantic information. Experiments on multiple benchmarks demonstrate that our method achieves new SOTA performance with a modest cost in ranking sentence synthesis.


Chinese Spelling Correction: A Comprehensive Survey of Progress, Challenges, and Opportunities

arXiv.org Artificial Intelligence

Chinese Spelling Correction (CSC) is a critical task in natural language processing, aimed at detecting and correcting spelling errors in Chinese text. This survey provides a comprehensive overview of CSC, tracing its evolution from pre-trained language models to large language models, and critically analyzing their respective strengths and weaknesses in this domain. Moreover, we further present a detailed examination of existing benchmark datasets, highlighting their inherent challenges and limitations. Finally, we propose promising future research directions, particularly focusing on leveraging the potential of LLMs and their reasoning capabilities for improved CSC performance. To the best of our knowledge, this is the first comprehensive survey dedicated to the field of CSC. We believe this work will serve as a valuable resource for researchers, fostering a deeper understanding of the field and inspiring future advancements.


TD3: Tucker Decomposition Based Dataset Distillation Method for Sequential Recommendation

arXiv.org Artificial Intelligence

In the era of data-centric AI, the focus of recommender systems has shifted from model-centric innovations to data-centric approaches. The success of modern AI models is built on large-scale datasets, but this also results in significant training costs. Dataset distillation has emerged as a key solution, condensing large datasets to accelerate model training while preserving model performance. However, condensing discrete and sequentially correlated user-item interactions, particularly with extensive item sets, presents considerable challenges. This paper introduces \textbf{TD3}, a novel \textbf{T}ucker \textbf{D}ecomposition based \textbf{D}ataset \textbf{D}istillation method within a meta-learning framework, designed for sequential recommendation. TD3 distills a fully expressive \emph{synthetic sequence summary} from original data. To efficiently reduce computational complexity and extract refined latent patterns, Tucker decomposition decouples the summary into four factors: \emph{synthetic user latent factor}, \emph{temporal dynamics latent factor}, \emph{shared item latent factor}, and a \emph{relation core} that models their interconnections. Additionally, a surrogate objective in bi-level optimization is proposed to align feature spaces extracted from models trained on both original data and synthetic sequence summary beyond the na\"ive performance matching approach. In the \emph{inner-loop}, an augmentation technique allows the learner to closely fit the synthetic summary, ensuring an accurate update of it in the \emph{outer-loop}. To accelerate the optimization process and address long dependencies, RaT-BPTT is employed for bi-level optimization. Experiments and analyses on multiple public datasets have confirmed the superiority and cross-architecture generalizability of the proposed designs. Codes are released at https://github.com/USTC-StarTeam/TD3.


General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data

arXiv.org Artificial Intelligence

Universal knowledge representation is a central problem for multivariate time series(MTS) foundation models and yet remains open. This paper investigates this problem from the first principle and it makes four folds of contributions. First, a new empirical finding is revealed: time series with different time granularities (or corresponding frequency resolutions) exhibit distinct joint distributions in the frequency domain. This implies a crucial aspect of learning universal knowledge, one that has been overlooked by previous studies. Second, a novel Fourier knowledge attention mechanism is proposed to enable learning time granularity-aware representations from both the temporal and frequency domains. Third, an autoregressive blank infilling pre-training framework is incorporated to time series analysis for the first time, leading to a generative tasks agnostic pre-training strategy. To this end, we develop the General Time-series Model (GTM), a unified MTS foundation model that addresses the limitation of contemporary time series models, which often require token, pre-training, or model-level customizations for downstream tasks adaption. Fourth, extensive experiments show that GTM outperforms state-of-the-art (SOTA) methods across all generative tasks, including long-term forecasting, anomaly detection, and imputation.


DASKT: A Dynamic Affect Simulation Method for Knowledge Tracing

arXiv.org Artificial Intelligence

Knowledge Tracing (KT) predicts future performance by modeling students' historical interactions, and understanding students' affective states can enhance the effectiveness of KT, thereby improving the quality of education. Although traditional KT values students' cognition and learning behaviors, efficient evaluation of students' affective states and their application in KT still require further exploration due to the non-affect-oriented nature of the data and budget constraints. To address this issue, we propose a computation-driven approach, Dynamic Affect Simulation Knowledge Tracing (DASKT), to explore the impact of various student affective states (such as frustration, concentration, boredom, and confusion) on their knowledge states. In this model, we first extract affective factors from students' non-affect-oriented behavioral data, then use clustering and spatiotemporal sequence modeling to accurately simulate students' dynamic affect changes when dealing with different problems. Subsequently, {\color{blue}we incorporate affect with time-series analysis to improve the model's ability to infer knowledge states over time and space.} Extensive experimental results on two public real-world educational datasets show that DASKT can achieve more reasonable knowledge states under the effect of students' affective states. Moreover, DASKT outperforms the most advanced KT methods in predicting student performance. Our research highlights a promising avenue for future KT studies, focusing on achieving high interpretability and accuracy.