Goto

Collaborating Authors

 Chen, Dian


Empirical Analysis of Privacy-Fairness-Accuracy Trade-offs in Federated Learning: A Step Towards Responsible AI

arXiv.org Artificial Intelligence

Federated Learning (FL) enables collaborative machine learning while preserving data privacy but struggles to balance privacy preservation (PP) and fairness. Techniques like Differential Privacy (DP), Homomorphic Encryption (HE), and Secure Multi-Party Computation (SMC) protect sensitive data but introduce trade-offs. DP enhances privacy but can disproportionately impact underrepresented groups, while HE and SMC mitigate fairness concerns at the cost of computational overhead. This work explores the privacy-fairness trade-offs in FL under IID (Independent and Identically Distributed) and non-IID data distributions, benchmarking q-FedAvg, q-MAML, and Ditto on diverse datasets. Our findings highlight context-dependent trade-offs and offer guidelines for designing FL systems that uphold responsible AI principles, ensuring fairness, privacy, and equitable real-world applications.


Advancing Human-Machine Teaming: Concepts, Challenges, and Applications

arXiv.org Artificial Intelligence

Human-Machine Teaming (HMT) is revolutionizing collaboration across domains such as defense, healthcare, and autonomous systems by integrating AI-driven decision-making, trust calibration, and adaptive teaming. This survey presents a comprehensive taxonomy of HMT, analyzing theoretical models, including reinforcement learning, instance-based learning, and interdependence theory, alongside interdisciplinary methodologies. Unlike prior reviews, we examine team cognition, ethical AI, multi-modal interactions, and real-world evaluation frameworks. Key challenges include explainability, role allocation, and scalable benchmarking. We propose future research in cross-domain adaptation, trust-aware AI, and standardized testbeds. By bridging computational and social sciences, this work lays a foundation for resilient, ethical, and scalable HMT systems.


Zero-Shot Novel View and Depth Synthesis with Multi-View Geometric Diffusion

arXiv.org Artificial Intelligence

Current methods for 3D scene reconstruction from sparse posed images employ intermediate 3D representations such as neural fields, voxel grids, or 3D Gaussians, to achieve multi-view consistent scene appearance and geometry. In this paper we introduce MVGD, a diffusion-based architecture capable of direct pixel-level generation of images and depth maps from novel viewpoints, given an arbitrary number of input views. Our method uses raymap conditioning to both augment visual features with spatial information from different viewpoints, as well as to guide the generation of images and depth maps from novel views. A key aspect of our approach is the multi-task generation of images and depth maps, using learnable task embeddings to guide the diffusion process towards specific modalities. We train this model on a collection of more than 60 million multi-view samples from publicly available datasets, and propose techniques to enable efficient and consistent learning in such diverse conditions. We also propose a novel strategy that enables the efficient training of larger models by incrementally fine-tuning smaller ones, with promising scaling behavior. Through extensive experiments, we report state-of-the-art results in multiple novel view synthesis benchmarks, as well as multi-view stereo and video depth estimation.


Learning to Drive via Asymmetric Self-Play

arXiv.org Artificial Intelligence

Large-scale data is crucial for learning realistic and capable driving policies. However, it can be impractical to rely on scaling datasets with real data alone. The majority of driving data is uninteresting, and deliberately collecting new long-tail scenarios is expensive and unsafe. We propose asymmetric self-play to scale beyond real data with additional challenging, solvable, and realistic synthetic scenarios. Our approach pairs a teacher that learns to generate scenarios it can solve but the student cannot, with a student that learns to solve them. When applied to traffic simulation, we learn realistic policies with significantly fewer collisions in both nominal and long-tail scenarios. Our policies further zero-shot transfer to generate training data for end-to-end autonomy, significantly outperforming state-of-the-art adversarial approaches, or using real data alone. For more information, visit https://waabi.ai/selfplay .


SusFL: Energy-Aware Federated Learning-based Monitoring for Sustainable Smart Farms

arXiv.org Artificial Intelligence

We propose a novel energy-aware federated learning (FL)-based system, namely SusFL, for sustainable smart farming to address the challenge of inconsistent health monitoring due to fluctuating energy levels of solar sensors. This system equips animals, such as cattle, with solar sensors with computational capabilities, including Raspberry Pis, to train a local deep-learning model on health data. These sensors periodically update Long Range (LoRa) gateways, forming a wireless sensor network (WSN) to detect diseases like mastitis. Our proposed SusFL system incorporates mechanism design, a game theory concept, for intelligent client selection to optimize monitoring quality while minimizing energy use. This strategy ensures the system's sustainability and resilience against adversarial attacks, including data poisoning and privacy threats, that could disrupt FL operations. Through extensive comparative analysis using real-time datasets, we demonstrate that our FL-based monitoring system significantly outperforms existing methods in prediction accuracy, operational efficiency, system reliability (i.e., mean time between failures or MTBF), and social welfare maximization by the mechanism designer. Our findings validate the superiority of our system for effective and sustainable animal health monitoring in smart farms. The experimental results show that SusFL significantly improves system performance, including a $10\%$ reduction in energy consumption, a $15\%$ increase in social welfare, and a $34\%$ rise in Mean Time Between Failures (MTBF), alongside a marginal increase in the global model's prediction accuracy.


pix2gestalt: Amodal Segmentation by Synthesizing Wholes

arXiv.org Artificial Intelligence

Our approach capitalizes on diffusion models and transferring their representations to denoising diffusion models [14], which are excellent representations this task, we learn a conditional diffusion model for reconstructing of the natural image manifold and capture all whole objects in challenging zero-shot cases, including different types of whole objects and their occlusions. Due examples that break natural and physical priors, to their large-scale training data, we hypothesize such pretrained such as art. As training data, we use a synthetically curated models have implicitly learned amodal representations dataset containing occluded objects paired with their whole (Figure 2), which we can reconfigure to encode object counterparts. Experiments show that our approach outperforms grouping and perform amodal completion. By learning supervised baselines on established benchmarks. Our from a synthetic dataset of occlusions and their whole counterparts, model can furthermore be used to significantly improve the we create a conditional diffusion model that, given performance of existing object recognition and 3D reconstruction an RGB image and a point prompt, generates whole objects methods in the presence of occlusions.


FSD: Fast Self-Supervised Single RGB-D to Categorical 3D Objects

arXiv.org Artificial Intelligence

In this work, we address the challenging task of 3D object recognition without the reliance on real-world 3D labeled data. Our goal is to predict the 3D shape, size, and 6D pose of objects within a single RGB-D image, operating at the category level and eliminating the need for CAD models during inference. While existing self-supervised methods have made strides in this field, they often suffer from inefficiencies arising from non-end-to-end processing, reliance on separate models for different object categories, and slow surface extraction during the training of implicit reconstruction models; thus hindering both the speed and real-world applicability of the 3D recognition process. Our proposed method leverages a multi-stage training pipeline, designed to efficiently transfer synthetic performance to the real-world domain. This approach is achieved through a combination of 2D and 3D supervised losses during the synthetic domain training, followed by the incorporation of 2D supervised and 3D self-supervised losses on real-world data in two additional learning stages. By adopting this comprehensive strategy, our method successfully overcomes the aforementioned limitations and outperforms existing self-supervised 6D pose and size estimation baselines on the NOCS test-set with a 16.4% absolute improvement in mAP for 6D pose estimation while running in near real-time at 5 Hz.


MotionLM: Multi-Agent Motion Forecasting as Language Modeling

arXiv.org Artificial Intelligence

Reliable forecasting of the future behavior of road agents is a critical component to safe planning in autonomous vehicles. Here, we represent continuous trajectories as sequences of discrete motion tokens and cast multi-agent motion prediction as a language modeling task over this domain. Our model, MotionLM, provides several advantages: First, it does not require anchors or explicit latent variable optimization to learn multimodal distributions. Instead, we leverage a single standard language modeling objective, maximizing the average log probability over sequence tokens. Second, our approach bypasses post-hoc interaction heuristics where individual agent trajectory generation is conducted prior to interactive scoring. Instead, MotionLM produces joint distributions over interactive agent futures in a single autoregressive decoding process. In addition, the model's sequential factorization enables temporally causal conditional rollouts. The proposed approach establishes new state-of-the-art performance for multi-agent motion prediction on the Waymo Open Motion Dataset, ranking 1st on the interactive challenge leaderboard.


Towards Zero-Shot Scale-Aware Monocular Depth Estimation

arXiv.org Artificial Intelligence

Monocular depth estimation is scale-ambiguous, and thus requires scale supervision to produce metric predictions. Even so, the resulting models will be geometry-specific, with learned scales that cannot be directly transferred across domains. Because of that, recent works focus instead on relative depth, eschewing scale in favor of improved up-to-scale zero-shot transfer. In this work we introduce ZeroDepth, a novel monocular depth estimation framework capable of predicting metric scale for arbitrary test images from different domains and camera parameters. This is achieved by (i) the use of input-level geometric embeddings that enable the network to learn a scale prior over objects; and (ii) decoupling the encoder and decoder stages, via a variational latent representation that is conditioned on single frame information. We evaluated ZeroDepth targeting both outdoor (KITTI, DDAD, nuScenes) and indoor (NYUv2) benchmarks, and achieved a new state-of-the-art in both settings using the same pre-trained model, outperforming methods that train on in-domain data and require test-time scaling to produce metric estimates.


Viewpoint Equivariance for Multi-View 3D Object Detection

arXiv.org Artificial Intelligence

3D object detection from visual sensors is a cornerstone capability of robotic systems. State-of-the-art methods focus on reasoning and decoding object bounding boxes from multi-view camera input. In this work we gain intuition from the integral role of multi-view consistency in 3D scene understanding and geometric learning. To this end, we introduce VEDet, a novel 3D object detection framework that exploits 3D multi-view geometry to improve localization through viewpoint awareness and equivariance. VEDet leverages a query-based transformer architecture and encodes the 3D scene by augmenting image features with positional encodings from their 3D perspective geometry. We design view-conditioned queries at the output level, which enables the generation of multiple virtual frames during training to learn viewpoint equivariance by enforcing multi-view consistency. The multi-view geometry injected at the input level as positional encodings and regularized at the loss level provides rich geometric cues for 3D object detection, leading to state-of-the-art performance on the nuScenes benchmark. The code and model are made available at https://github.com/TRI-ML/VEDet.