Goto

Collaborating Authors

 Chemla, Emmanuel


Large Language Models as Proxies for Theories of Human Linguistic Cognition

arXiv.org Artificial Intelligence

We consider the possible role of current large language models (LLMs) in the study of human linguistic cognition. We focus on the use of such models as proxies for theories of cognition that are relatively linguistically-neutral in their representations and learning but differ from current LLMs in key ways. We illustrate this potential use of LLMs as proxies for theories of cognition in the context of two kinds of questions: (a) whether the target theory accounts for the acquisition of a given pattern from a given corpus; and (b) whether the target theory makes a given typologically-attested pattern easier to acquire than another, typologically-unattested pattern. For each of the two questions we show, building on recent literature, how current LLMs can potentially be of help, but we note that at present this help is quite limited.


Disentanglement and Compositionality of Letter Identity and Letter Position in Variational Auto-Encoder Vision Models

arXiv.org Artificial Intelligence

Human readers can accurately count how many letters are in a word (e.g., 7 in ``buffalo''), remove a letter from a given position (e.g., ``bufflo'') or add a new one. The human brain of readers must have therefore learned to disentangle information related to the position of a letter and its identity. Such disentanglement is necessary for the compositional, unbounded, ability of humans to create and parse new strings, with any combination of letters appearing in any positions. Do modern deep neural models also possess this crucial compositional ability? Here, we tested whether neural models that achieve state-of-the-art on disentanglement of features in visual input can also disentangle letter position and letter identity when trained on images of written words. Specifically, we trained beta variational autoencoder ($\beta$-VAE) to reconstruct images of letter strings and evaluated their disentanglement performance using CompOrth - a new benchmark that we created for studying compositional learning and zero-shot generalization in visual models for orthography. The benchmark suggests a set of tests, of increasing complexity, to evaluate the degree of disentanglement between orthographic features of written words in deep neural models. Using CompOrth, we conducted a set of experiments to analyze the generalization ability of these models, in particular, to unseen word length and to unseen combinations of letter identities and letter positions. We found that while models effectively disentangle surface features, such as horizontal and vertical `retinal' locations of words within an image, they dramatically fail to disentangle letter position and letter identity and lack any notion of word length. Together, this study demonstrates the shortcomings of state-of-the-art $\beta$-VAE models compared to humans and proposes a new challenge and a corresponding benchmark to evaluate neural models.


A polar coordinate system represents syntax in large language models

arXiv.org Artificial Intelligence

Originally formalized with symbolic representations, syntactic trees may also be effectively represented in the activations of large language models (LLMs). Indeed, a 'Structural Probe' can find a subspace of neural activations, where syntactically related words are relatively close to one-another. However, this syntactic code remains incomplete: the distance between the Structural Probe word embeddings can represent the existence but not the type and direction of syntactic relations. Here, we hypothesize that syntactic relations are, in fact, coded by the relative direction between nearby embeddings. To test this hypothesis, we introduce a 'Polar Probe' trained to read syntactic relations from both the distance and the direction between word embeddings. Our approach reveals three main findings. First, our Polar Probe successfully recovers the type and direction of syntactic relations, and substantially outperforms the Structural Probe by nearly two folds. Second, we confirm that this polar coordinate system exists in a low-dimensional subspace of the intermediate layers of many LLMs and becomes increasingly precise in the latest frontier models. Third, we demonstrate with a new benchmark that similar syntactic relations are coded similarly across the nested levels of syntactic trees. Overall, this work shows that LLMs spontaneously learn a geometry of neural activations that explicitly represents the main symbolic structures of linguistic theory.


Improving Spoken Language Modeling with Phoneme Classification: A Simple Fine-tuning Approach

arXiv.org Artificial Intelligence

Recent progress in Spoken Language Modeling has shown that learning language directly from speech is feasible. Generating speech through a pipeline that operates at the text level typically loses nuances, intonations, and non-verbal vocalizations. Modeling directly from speech opens up the path to more natural and expressive systems. On the other hand, speech-only systems require up to three orders of magnitude more data to catch up to their text-based counterparts in terms of their semantic abilities. We show that fine-tuning speech representation models on phoneme classification leads to more context-invariant representations, and language models trained on these units achieve comparable lexical comprehension to ones trained on hundred times more data.


What Makes Two Language Models Think Alike?

arXiv.org Artificial Intelligence

Do architectural differences significantly affect the way models represent and process language? We propose a new approach, based on metric-learning encoding models (MLEMs), as a first step to answer this question. The approach provides a feature-based comparison of how any two layers of any two models represent linguistic information. We apply the method to BERT, GPT-2 and Mamba. Unlike previous methods, MLEMs offer a transparent comparison, by identifying the specific linguistic features responsible for similarities and differences. More generally, the method uses formal, symbolic descriptions of a domain, and use these to compare neural representations. As such, the approach can straightforwardly be extended to other domains, such as speech and vision, and to other neural systems, including human brains.


The Impact of Syntactic and Semantic Proximity on Machine Translation with Back-Translation

arXiv.org Artificial Intelligence

Unsupervised on-the-fly back-translation, in conjunction with multilingual pretraining, is the dominant method for unsupervised neural machine translation. Theoretically, however, the method should not work in general. We therefore conduct controlled experiments with artificial languages to determine what properties of languages make back-translation an effective training method, covering lexical, syntactic, and semantic properties. We find, contrary to popular belief, that (i) parallel word frequency distributions, (ii) partially shared vocabulary, and (iii) similar syntactic structure across languages are not sufficient to explain the success of back-translation. We show however that even crude semantic signal (similar lexical fields across languages) does improve alignment of two languages through back-translation. We conjecture that rich semantic dependencies, parallel across languages, are at the root of the success of unsupervised methods based on back-translation. Overall, the success of unsupervised machine translation was far from being analytically guaranteed. Instead, it is another proof that languages of the world share deep similarities, and we hope to show how to identify which of these similarities can serve the development of unsupervised, cross-linguistic tools.


Bridging the Empirical-Theoretical Gap in Neural Network Formal Language Learning Using Minimum Description Length

arXiv.org Artificial Intelligence

Neural networks offer good approximation to many tasks but consistently fail to reach perfect generalization, even when theoretical work shows that such perfect solutions can be expressed by certain architectures. Using the task of formal language learning, we focus on one simple formal language and show that the theoretically correct solution is in fact not an optimum of commonly used objectives -- even with regularization techniques that according to common wisdom should lead to simple weights and good generalization (L1, L2) or other meta-heuristics (early-stopping, dropout). However, replacing standard targets with the Minimum Description Length objective (MDL) results in the correct solution being an optimum.


Minimum Description Length Hopfield Networks

arXiv.org Artificial Intelligence

Associative memory architectures are designed for memorization but also offer, through their retrieval method, a form of generalization to unseen inputs: stored memories can be seen as prototypes from this point of view. Focusing on Modern Hopfield Networks (MHN), we show that a large memorization capacity undermines the generalization opportunity. We offer a solution to better optimize this tradeoff. It relies on Minimum Description Length (MDL) to determine during training which memories to store, as well as how many of them.


Benchmarking Neural Network Generalization for Grammar Induction

arXiv.org Artificial Intelligence

How well do neural networks generalize? Even for grammar induction tasks, where the target generalization is fully known, previous works have left the question open, testing very limited ranges beyond the training set and using different success criteria. We provide a measure of neural network generalization based on fully specified formal languages. Given a model and a formal grammar, the method assigns a generalization score representing how well a model generalizes to unseen samples in inverse relation to the amount of data it was trained on. The benchmark includes languages such as $a^nb^n$, $a^nb^nc^n$, $a^nb^mc^{n+m}$, and Dyck-1 and 2. We evaluate selected architectures using the benchmark and find that networks trained with a Minimum Description Length objective (MDL) generalize better and using less data than networks trained using standard loss functions. The benchmark is available at https://github.com/taucompling/bliss.