Not enough data to create a plot.
Try a different view from the menu above.
Chang, Du-Seong
RILQ: Rank-Insensitive LoRA-based Quantization Error Compensation for Boosting 2-bit Large Language Model Accuracy
Lee, Geonho, Lee, Janghwan, Hong, Sukjin, Kim, Minsoo, Ahn, Euijai, Chang, Du-Seong, Choi, Jungwook
Low-rank adaptation (LoRA) has become the dominant method for parameter-efficient LLM fine-tuning, with LoRA-based quantization error compensation (LQEC) emerging as a powerful tool for recovering accuracy in compressed LLMs. However, LQEC has underperformed in sub-4-bit scenarios, with no prior investigation into understanding this limitation. We propose RILQ (Rank-Insensitive LoRA-based Quantization Error Compensation) to understand fundamental limitation and boost 2-bit LLM accuracy. Based on rank analysis revealing model-wise activation discrepancy loss's rank-insensitive nature, RILQ employs this loss to adjust adapters cooperatively across layers, enabling robust error compensation with low-rank adapters. Evaluations on LLaMA-2 and LLaMA-3 demonstrate RILQ's consistent improvements in 2-bit quantized inference across various state-of-the-art quantizers and enhanced accuracy in task-specific fine-tuning. RILQ maintains computational efficiency comparable to existing LoRA methods, enabling adapter-merged weight-quantized LLM inference with significantly enhanced accuracy, making it a promising approach for boosting 2-bit LLM performance.
Improving Conversational Abilities of Quantized Large Language Models via Direct Preference Alignment
Lee, Janghwan, Park, Seongmin, Hong, Sukjin, Kim, Minsoo, Chang, Du-Seong, Choi, Jungwook
The rapid advancement of large language models (LLMs) has facilitated their transformation into conversational chatbots that can grasp contextual nuances and generate pertinent sentences, closely mirroring human values through advanced techniques such as instruction tuning and reinforcement learning from human feedback (RLHF). However, the computational efficiency required for LLMs, achieved through techniques like post-training quantization (PTQ), presents challenges such as token-flipping that can impair chatbot performance. In response, we propose a novel preference alignment approach, quantization-aware direct preference optimization (QDPO), that aligns quantized LLMs with their full-precision counterparts, improving conversational abilities. Evaluated on two instruction-tuned LLMs in various languages, QDPO demonstrated superior performance in improving conversational abilities compared to established PTQ and knowledge-distillation fine-tuning techniques, marking a significant step forward in the development of efficient and effective conversational LLMs.
Evaluating Visual and Cultural Interpretation: The K-Viscuit Benchmark with Human-VLM Collaboration
Baek, Yujin, Park, ChaeHun, Kim, Jaeseok, Heo, Yu-Jung, Chang, Du-Seong, Choo, Jaegul
To create culturally inclusive vision-language models (VLMs), the foremost requirement is developing a test benchmark that can diagnose the models' ability to respond to questions reflecting cultural elements. This paper addresses the necessity for such benchmarks, noting that existing research has relied on human annotators' manual efforts, which impedes diversity and efficiency. We propose a semi-automated pipeline for constructing cultural VLM benchmarks to enhance diversity and efficiency. This pipeline leverages human-VLM collaboration, where VLMs generate questions based on guidelines, human-annotated examples, and image-wise relevant knowledge, which are then reviewed by native speakers for quality and cultural relevance. The effectiveness of our adaptable pipeline is demonstrated through a specific application: creating a dataset tailored to Korean culture, dubbed K-Viscuit. The resulting benchmark features two types of questions: Type 1 questions measure visual recognition abilities, while Type 2 assess fine-grained visual reasoning skills. This ensures a thorough diagnosis of VLM models across various aspects. Our evaluation using K-Viscuit revealed that open-source models notably lag behind proprietary models in understanding Korean culture, highlighting areas for improvement. We provided diverse analyses of VLM performance across different cultural aspects. Besides, we explored the potential of incorporating external knowledge retrieval to enhance the generation process, suggesting future directions for improving cultural interpretation ability of VLMs. Our dataset and code will be made publicly available.
How Do Large Language Models Acquire Factual Knowledge During Pretraining?
Chang, Hoyeon, Park, Jinho, Ye, Seonghyeon, Yang, Sohee, Seo, Youngkyung, Chang, Du-Seong, Seo, Minjoon
Despite the recent observation that large language models (LLMs) can store substantial factual knowledge, there is a limited understanding of the mechanisms of how they acquire factual knowledge through pretraining. This work addresses this gap by studying how LLMs acquire factual knowledge during pretraining. The findings reveal several important insights into the dynamics of factual knowledge acquisition during pretraining. First, counterintuitively, we observe that pretraining on more data shows no significant improvement in the model's capability to acquire and maintain factual knowledge. Next, there is a power-law relationship between training steps and forgetting of memorization and generalization of factual knowledge, and LLMs trained with duplicated training data exhibit faster forgetting. Third, training LLMs with larger batch sizes can enhance the models' robustness to forgetting. Overall, our observations suggest that factual knowledge acquisition in LLM pretraining occurs by progressively increasing the probability of factual knowledge presented in the pretraining data at each step. However, this increase is diluted by subsequent forgetting. Based on this interpretation, we demonstrate that we can provide plausible explanations for recently observed behaviors of LLMs, such as the poor performance of LLMs on long-tail knowledge and the benefits of deduplicating the pretraining corpus.
Enhancing Psychotherapy Counseling: A Data Augmentation Pipeline Leveraging Large Language Models for Counseling Conversations
Kim, Jun-Woo, Han, Ji-Eun, Koh, Jun-Seok, Seo, Hyeon-Tae, Chang, Du-Seong
We introduce a pipeline that leverages Large Language Models (LLMs) to transform single-turn psychotherapy counseling sessions into multi-turn interactions. While AI-supported online counseling services for individuals with mental disorders exist, they are often constrained by the limited availability of multi-turn training datasets and frequently fail to fully utilize therapists' expertise. Our proposed pipeline effectively addresses these limitations. The pipeline comprises two main steps: 1) Information Extraction and 2) Multi-turn Counseling Generation. Each step is meticulously designed to extract and generate comprehensive multi-turn counseling conversations from the available datasets. Experimental results from both zero-shot and few-shot generation scenarios demonstrate that our approach significantly enhances the ability of LLMs to produce higher quality multi-turn dialogues in the context of mental health counseling. Our pipeline and dataset are publicly available https://github.com/jwkim-chat/A-Data-Augmentation-Pipeline-Leveraging-Large-Language-Models-for-Counseling-Conversations.
Solution for SMART-101 Challenge of CVPR Multi-modal Algorithmic Reasoning Task 2024
Ahn, Jinwoo, Park, Junhyeok, Kim, Min-Jun, Kim, Kang-Hyeon, Sohn, So-Yeong, Lee, Yun-Ji, Chang, Du-Seong, Heo, Yu-Jung, Kim, Eun-Sol
In this paper, the solution of HYU MLLAB KT Team to the Multimodal Algorithmic Reasoning Task: SMART-101 CVPR 2024 Challenge is presented. Beyond conventional visual question-answering problems, the SMART-101 challenge aims to achieve human-level multimodal understanding by tackling complex visio-linguistic puzzles designed for children in the 6-8 age group. To solve this problem, we suggest two main ideas. First, to utilize the reasoning ability of a large-scale language model (LLM), the given visual cues (images) are grounded in the text modality. For this purpose, we generate highly detailed text captions that describe the context of the image and use these captions as input for the LLM. Second, due to the nature of puzzle images, which often contain various geometric visual patterns, we utilize an object detection algorithm to ensure these patterns are not overlooked in the captioning process. We employed the SAM algorithm, which can detect various-size objects, to capture the visual features of these geometric patterns and used this information as input for the LLM. Under the puzzle split configuration, we achieved an option selection accuracy Oacc of 29.5 on the test set and a weighted option selection accuracy (WOSA) of 27.1 on the challenge set.
Translation Deserves Better: Analyzing Translation Artifacts in Cross-lingual Visual Question Answering
Park, ChaeHun, Lee, Koanho, Lim, Hyesu, Kim, Jaeseok, Park, Junmo, Heo, Yu-Jung, Chang, Du-Seong, Choo, Jaegul
Building a reliable visual question answering~(VQA) system across different languages is a challenging problem, primarily due to the lack of abundant samples for training. To address this challenge, recent studies have employed machine translation systems for the cross-lingual VQA task. This involves translating the evaluation samples into a source language (usually English) and using monolingual models (i.e., translate-test). However, our analysis reveals that translated texts contain unique characteristics distinct from human-written ones, referred to as translation artifacts. We find that these artifacts can significantly affect the models, confirmed by extensive experiments across diverse models, languages, and translation processes. In light of this, we present a simple data augmentation strategy that can alleviate the adverse impacts of translation artifacts.
PSYDIAL: Personality-based Synthetic Dialogue Generation using Large Language Models
Han, Ji-Eun, Koh, Jun-Seok, Seo, Hyeon-Tae, Chang, Du-Seong, Sohn, Kyung-Ah
We present a novel end-to-end personality-based synthetic dialogue data generation pipeline, specifically designed to elicit responses from large language models via prompting. We design the prompts to generate more human-like dialogues considering real-world scenarios when users engage with chatbots. We introduce PSYDIAL, the first Korean dialogue dataset focused on personality-based dialogues, curated using our proposed pipeline. Notably, we focus on the Extraversion dimension of the Big Five personality model in our research. Experimental results indicate that while pre-trained models and those fine-tuned with a chit-chat dataset struggle to generate responses reflecting personality, models trained with PSYDIAL show significant improvements. The versatility of our pipeline extends beyond dialogue tasks, offering potential for other non-dialogue related applications. This research opens doors for more nuanced, personality-driven conversational AI in Korean and potentially other languages.
Token-Scaled Logit Distillation for Ternary Weight Generative Language Models
Kim, Minsoo, Lee, Sihwa, Lee, Janghwan, Hong, Sukjin, Chang, Du-Seong, Sung, Wonyong, Choi, Jungwook
Generative Language Models (GLMs) have shown impressive performance in tasks such as text generation, understanding, and reasoning. However, the large model size poses challenges for practical deployment. To solve this problem, Quantization-Aware Training (QAT) has become increasingly popular. However, current QAT methods for generative models have resulted in a noticeable loss of accuracy. To counteract this issue, we propose a novel knowledge distillation method specifically designed for GLMs. Our method, called token-scaled logit distillation, prevents overfitting and provides superior learning from the teacher model and ground truth. This research marks the first evaluation of ternary weight quantization-aware training of large-scale GLMs with less than 1.0 degradation in perplexity and achieves enhanced accuracy in tasks like common-sense QA and arithmetic reasoning as well as natural language understanding. Our code is available at https://github.com/aiha-lab/TSLD.
NASH: A Simple Unified Framework of Structured Pruning for Accelerating Encoder-Decoder Language Models
Ko, Jongwoo, Park, Seungjoon, Kim, Yujin, Ahn, Sumyeong, Chang, Du-Seong, Ahn, Euijai, Yun, Se-Young
Structured pruning methods have proven effective in reducing the model size and accelerating inference speed in various network architectures such as Transformers. Despite the versatility of encoder-decoder models in numerous NLP tasks, the structured pruning methods on such models are relatively less explored compared to encoder-only models. In this study, we investigate the behavior of the structured pruning of the encoder-decoder models in the decoupled pruning perspective of the encoder and decoder component, respectively. Our findings highlight two insights: (1) the number of decoder layers is the dominant factor of inference speed, and (2) low sparsity in the pruned encoder network enhances generation quality. Motivated by these findings, we propose a simple and effective framework, NASH, that narrows the encoder and shortens the decoder networks of encoder-decoder models. Extensive experiments on diverse generation and inference tasks validate the effectiveness of our method in both speedup and output quality.