Chandraker, Manmohan
Materialist: Physically Based Editing Using Single-Image Inverse Rendering
Wang, Lezhong, Tran, Duc Minh, Cui, Ruiqi, TG, Thomson, Chandraker, Manmohan, Frisvad, Jeppe Revall
To perform image editing based on single-view, inverse physically based rendering, we present a method combining a learning-based approach with progressive differentiable rendering. Given an image, our method leverages neural networks to predict initial material properties. Progressive differentiable rendering is then used to optimize the environment map and refine the material properties with the goal of closely matching the rendered result to the input image. We require only a single image while other inverse rendering methods based on the rendering equation require multiple views. In comparison to single-view methods that rely on neural renderers, our approach achieves more realistic light material interactions, accurate shadows, and global illumination. Furthermore, with optimized material properties and illumination, our method enables a variety of tasks, including physically based material editing, object insertion, and relighting. We also propose a method for material transparency editing that operates effectively without requiring full scene geometry. Compared with methods based on Stable Diffusion, our approach offers stronger interpretability and more realistic light refraction based on empirical results.
UDA-Bench: Revisiting Common Assumptions in Unsupervised Domain Adaptation Using a Standardized Framework
Kalluri, Tarun, Ravichandran, Sreyas, Chandraker, Manmohan
In this work, we take a deeper look into the diverse factors that influence the efficacy of modern unsupervised domain adaptation (UDA) methods using a large-scale, controlled empirical study. To facilitate our analysis, we first develop UDA-Bench, a novel PyTorch framework that standardizes training and evaluation for domain adaptation enabling fair comparisons across several UDA methods. Using UDA-Bench, our comprehensive empirical study into the impact of backbone architectures, unlabeled data quantity, and pre-training datasets reveals that: (i) the benefits of adaptation methods diminish with advanced backbones, (ii) current methods underutilize unlabeled data, and (iii) pre-training data significantly affects downstream adaptation in both supervised and selfsupervised settings. In the context of unsupervised adaptation, these observations uncover several novel and surprising properties, while scientifically validating several others that were often considered empirical heuristics or practitioner intuitions in the absence of a standardized training and evaluation framework. The UDA-Bench framework and trained models are publicly available.
Tell, Don't Show!: Language Guidance Eases Transfer Across Domains in Images and Videos
Kalluri, Tarun, Majumder, Bodhisattwa Prasad, Chandraker, Manmohan
We introduce LaGTran, a novel framework that utilizes text supervision to guide robust transfer of discriminative knowledge from labeled source to unlabeled target data with domain gaps. While unsupervised adaptation methods have been established to address this problem, they show limitations in handling challenging domain shifts due to their exclusive operation within the pixel-space. Motivated by our observation that semantically richer text modality has more favorable transfer properties, we devise a transfer mechanism to use a source-trained text-classifier to generate predictions on the target text descriptions, and utilize these predictions as supervision for the corresponding images. Our approach driven by language guidance is surprisingly easy and simple, yet significantly outperforms all prior approaches on challenging datasets like GeoNet and DomainNet, validating its extreme effectiveness. To further extend the scope of our study beyond images, we introduce a new benchmark called Ego2Exo to study ego-exo transfer in videos and find that our language-aided approach LaGTran yields significant gains in this highly challenging and non-trivial transfer setting. Code, models, and proposed datasets are publicly available at https://tarun005.github.io/lagtran/.
Robust Disaster Assessment from Aerial Imagery Using Text-to-Image Synthetic Data
Kalluri, Tarun, Lee, Jihyeon, Sohn, Kihyuk, Singla, Sahil, Chandraker, Manmohan, Xu, Joseph, Liu, Jeremiah
We present a simple and efficient method to leverage emerging text-to-image generative models in creating large-scale synthetic supervision for the task of damage assessment from aerial images. While significant recent advances have resulted in improved techniques for damage assessment using aerial or satellite imagery, they still suffer from poor robustness to domains where manual labeled data is unavailable, directly impacting post-disaster humanitarian assistance in such under-resourced geographies. Our contribution towards improving domain robustness in this scenario is two-fold. Firstly, we leverage the text-guided mask-based image editing capabilities of generative models and build an efficient and easily scalable pipeline to generate thousands of post-disaster images from low-resource domains. Secondly, we propose a simple two-stage training approach to train robust models while using manual supervision from different source domains along with the generated synthetic target domain data. We validate the strength of our proposed framework under cross-geography domain transfer setting from xBD and SKAI images in both single-source and multi-source settings, achieving significant improvements over a source-only baseline in each case.
A Minimalist Prompt for Zero-Shot Policy Learning
Song, Meng, Wang, Xuezhi, Biradar, Tanay, Qin, Yao, Chandraker, Manmohan
Transformer-based methods have exhibited significant generalization ability when prompted with target-domain demonstrations or example solutions during inference. Although demonstrations, as a way of task specification, can capture rich information that may be hard to specify by language, it remains unclear what information is extracted from the demonstrations to help generalization. Moreover, assuming access to demonstrations of an unseen task is impractical or unreasonable in many real-world scenarios, especially in robotics applications. These questions motivate us to explore what the minimally sufficient prompt could be to elicit the same level of generalization ability as the demonstrations. We study this problem in the contextural RL setting which allows for quantitative measurement of generalization and is commonly adopted by meta-RL and multi-task RL benchmarks. In this setting, the training and test Markov Decision Processes (MDPs) only differ in certain properties, which we refer to as task parameters. We show that conditioning a decision transformer on these task parameters alone can enable zero-shot generalization on par with or better than its demonstration-conditioned counterpart. This suggests that task parameters are essential for the generalization and DT models are trying to recover it from the demonstration prompt. To extract the remaining generalizable information from the supervision, we introduce an additional learnable prompt which is demonstrated to further boost zero-shot generalization across a range of robotic control, manipulation, and navigation benchmark tasks.
Efficient Transformer Encoders for Mask2Former-style models
Yao, Manyi, Aich, Abhishek, Suh, Yumin, Roy-Chowdhury, Amit, Shelton, Christian, Chandraker, Manmohan
Vision transformer based models bring significant improvements for image segmentation tasks. Although these architectures offer powerful capabilities irrespective of specific segmentation tasks, their use of computational resources can be taxing on deployed devices. One way to overcome this challenge is by adapting the computation level to the specific needs of the input image rather than the current one-size-fits-all approach. To this end, we introduce ECO-M2F or EffiCient TransfOrmer Encoders for Mask2Former-style models. Noting that the encoder module of M2F-style models incur high resource-intensive computations, ECO-M2F provides a strategy to self-select the number of hidden layers in the encoder, conditioned on the input image. To enable this self-selection ability for providing a balance between performance and computational efficiency, we present a three step recipe. The first step is to train the parent architecture to enable early exiting from the encoder. The second step is to create an derived dataset of the ideal number of encoder layers required for each training example. The third step is to use the aforementioned derived dataset to train a gating network that predicts the number of encoder layers to be used, conditioned on the input image. Additionally, to change the computational-accuracy tradeoff, only steps two and three need to be repeated which significantly reduces retraining time. Experiments on the public datasets show that the proposed approach reduces expected encoder computational cost while maintaining performance, adapts to various user compute resources, is flexible in architecture configurations, and can be extended beyond the segmentation task to object detection.
AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving
Liang, Mingfu, Su, Jong-Chyi, Schulter, Samuel, Garg, Sparsh, Zhao, Shiyu, Wu, Ying, Chandraker, Manmohan
Autonomous vehicle (AV) systems rely on robust perception models as a cornerstone of safety assurance. However, objects encountered on the road exhibit a long-tailed distribution, with rare or unseen categories posing challenges to a deployed perception model. This necessitates an expensive process of continuously curating and annotating data with significant human effort. We propose to leverage recent advances in vision-language and large language models to design an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios. This process operates iteratively, allowing for continuous self-improvement of the model. We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
What You See is What You GAN: Rendering Every Pixel for High-Fidelity Geometry in 3D GANs
Trevithick, Alex, Chan, Matthew, Takikawa, Towaki, Iqbal, Umar, De Mello, Shalini, Chandraker, Manmohan, Ramamoorthi, Ravi, Nagano, Koki
3D-aware Generative Adversarial Networks (GANs) have shown remarkable progress in learning to generate multi-view-consistent images and 3D geometries of scenes from collections of 2D images via neural volume rendering. Yet, the significant memory and computational costs of dense sampling in volume rendering have forced 3D GANs to adopt patch-based training or employ low-resolution rendering with post-processing 2D super resolution, which sacrifices multiview consistency and the quality of resolved geometry. Consequently, 3D GANs have not yet been able to fully resolve the rich 3D geometry present in 2D images. In this work, we propose techniques to scale neural volume rendering to the much higher resolution of native 2D images, thereby resolving fine-grained 3D geometry with unprecedented detail. Our approach employs learning-based samplers for accelerating neural rendering for 3D GAN training using up to 5 times fewer depth samples. This enables us to explicitly "render every pixel" of the full-resolution image during training and inference without post-processing superresolution in 2D. Together with our strategy to learn high-quality surface geometry, our method synthesizes high-resolution 3D geometry and strictly view-consistent images while maintaining image quality on par with baselines relying on post-processing super resolution. We demonstrate state-of-the-art 3D gemetric quality on FFHQ and AFHQ, setting a new standard for unsupervised learning of 3D shapes in 3D GANs.
Controllable Safety-Critical Closed-loop Traffic Simulation via Guided Diffusion
Chang, Wei-Jer, Pittaluga, Francesco, Tomizuka, Masayoshi, Zhan, Wei, Chandraker, Manmohan
Evaluating the performance of autonomous vehicle planning algorithms necessitates simulating long-tail traffic scenarios. Traditional methods for generating safety-critical scenarios often fall short in realism and controllability. Furthermore, these techniques generally neglect the dynamics of agent interactions. To mitigate these limitations, we introduce a novel closed-loop simulation framework rooted in guided diffusion models. Our approach yields two distinct advantages: 1) the generation of realistic long-tail scenarios that closely emulate real-world conditions, and 2) enhanced controllability, enabling more comprehensive and interactive evaluations. We achieve this through novel guidance objectives that enhance road progress while lowering collision and off-road rates. We develop a novel approach to simulate safety-critical scenarios through an adversarial term in the denoising process, which allows the adversarial agent to challenge a planner with plausible maneuvers, while all agents in the scene exhibit reactive and realistic behaviors. We validate our framework empirically using the NuScenes dataset, demonstrating improvements in both realism and controllability. These findings affirm that guided diffusion models provide a robust and versatile foundation for safety-critical, interactive traffic simulation, extending their utility across the broader landscape of autonomous driving. For additional resources and demonstrations, visit our project page at https://safe-sim.github.io.
LLM-Assist: Enhancing Closed-Loop Planning with Language-Based Reasoning
Sharan, S P, Pittaluga, Francesco, G, Vijay Kumar B, Chandraker, Manmohan
Although planning is a crucial component of the autonomous driving stack, researchers have yet to develop robust planning algorithms that are capable of safely handling the diverse range of possible driving scenarios. Learning-based planners suffer from overfitting and poor long-tail performance. On the other hand, rule-based planners generalize well, but might fail to handle scenarios that require complex driving maneuvers. To address these limitations, we investigate the possibility of leveraging the common-sense reasoning capabilities of Large Language Models (LLMs) such as GPT4 and Llama2 to generate plans for self-driving vehicles. In particular, we develop a novel hybrid planner that leverages a conventional rule-based planner in conjunction with an LLM-based planner. Guided by commonsense reasoning abilities of LLMs, our approach navigates complex scenarios which existing planners struggle with, produces well-reasoned outputs while also remaining grounded through working alongside the rule-based approach. Through extensive evaluation on the nuPlan benchmark, we achieve state-of-the-art performance, outperforming all existing pure learning- and rule-based methods across most metrics. Our code will be available at https://llmassist.github.io.