Chai, Joyce
3D-GRAND: A Million-Scale Dataset for 3D-LLMs with Better Grounding and Less Hallucination
Yang, Jianing, Chen, Xuweiyi, Madaan, Nikhil, Iyengar, Madhavan, Qian, Shengyi, Fouhey, David F., Chai, Joyce
The integration of language and 3D perception is crucial for developing embodied agents and robots that comprehend and interact with the physical world. While large language models (LLMs) have demonstrated impressive language understanding and generation capabilities, their adaptation to 3D environments (3D-LLMs) remains in its early stages. A primary challenge is the absence of large-scale datasets that provide dense grounding between language and 3D scenes. In this paper, we introduce 3D-GRAND, a pioneering large-scale dataset comprising 40,087 household scenes paired with 6.2 million densely-grounded scene-language instructions. Our results show that instruction tuning with 3D-GRAND significantly enhances grounding capabilities and reduces hallucinations in 3D-LLMs. As part of our contributions, we propose a comprehensive benchmark 3D-POPE to systematically evaluate hallucination in 3D-LLMs, enabling fair comparisons among future models. Our experiments highlight a scaling effect between dataset size and 3D-LLM performance, emphasizing the critical role of large-scale 3D-text datasets in advancing embodied AI research. Notably, our results demonstrate early signals for effective sim-to-real transfer, indicating that models trained on large synthetic data can perform well on real-world 3D scans. Through 3D-GRAND and 3D-POPE, we aim to equip the embodied AI community with essential resources and insights, setting the stage for more reliable and better-grounded 3D-LLMs.
LinkGPT: Teaching Large Language Models To Predict Missing Links
He, Zhongmou, Zhu, Jing, Qian, Shengyi, Chai, Joyce, Koutra, Danai
Large Language Models (LLMs) have shown promising results on various language and vision tasks. Recently, there has been growing interest in applying LLMs to graph-based tasks, particularly on Text-Attributed Graphs (TAGs). However, most studies have focused on node classification, while the use of LLMs for link prediction (LP) remains understudied. In this work, we propose a new task on LLMs, where the objective is to leverage LLMs to predict missing links between nodes in a graph. This task evaluates an LLM's ability to reason over structured data and infer new facts based on learned patterns. This new task poses two key challenges: (1) How to effectively integrate pairwise structural information into the LLMs, which is known to be crucial for LP performance, and (2) how to solve the computational bottleneck when teaching LLMs to perform LP. To address these challenges, we propose LinkGPT, the first end-to-end trained LLM for LP tasks. To effectively enhance the LLM's ability to understand the underlying structure, we design a two-stage instruction tuning approach where the first stage fine-tunes the pairwise encoder, projector, and node projector, and the second stage further fine-tunes the LLMs to predict links. To address the efficiency challenges at inference time, we introduce a retrieval-reranking scheme. Experiments show that LinkGPT can achieve state-of-the-art performance on real-world graphs as well as superior generalization in zero-shot and few-shot learning, surpassing existing benchmarks. At inference time, it can achieve $10\times$ speedup while maintaining high LP accuracy.
DriVLMe: Enhancing LLM-based Autonomous Driving Agents with Embodied and Social Experiences
Huang, Yidong, Sansom, Jacob, Ma, Ziqiao, Gervits, Felix, Chai, Joyce
Recent advancements in foundation models (FMs) have unlocked new prospects in autonomous driving, yet the experimental settings of these studies are preliminary, over-simplified, and fail to capture the complexity of real-world driving scenarios in human environments. It remains under-explored whether FM agents can handle long-horizon navigation tasks with free-from dialogue and deal with unexpected situations caused by environmental dynamics or task changes. To explore the capabilities and boundaries of FMs faced with the challenges above, we introduce DriVLMe, a video-language-model-based agent to facilitate natural and effective communication between humans and autonomous vehicles that perceive the environment and navigate. We develop DriVLMe from both embodied experiences in a simulated environment and social experiences from real human dialogue. While DriVLMe demonstrates competitive performance in both open-loop benchmarks and closed-loop human studies, we reveal several limitations and challenges, including unacceptable inference time, imbalanced training data, limited visual understanding, challenges with multi-turn interactions, simplified language generation from robotic experiences, and difficulties in handling on-the-fly unexpected situations like environmental dynamics and task changes.
Babysit A Language Model From Scratch: Interactive Language Learning by Trials and Demonstrations
Ma, Ziqiao, Wang, Zekun, Chai, Joyce
Humans are efficient language learners and inherently social creatures. Our language development is largely shaped by our social interactions, for example, the demonstration and feedback from caregivers. Contrary to human language learning, recent advancements in large language models have primarily adopted a non-interactive training paradigm, and refined pre-trained models through feedback afterward. In this work, we aim to examine how corrective feedback from interactions influences neural language acquisition from the ground up through systematically controlled experiments, assessing whether it contributes to learning efficiency in language models. We introduce a trial-and-demonstration (TnD) learning framework that incorporates three components: student trials, teacher demonstrations, and a reward conditioned on language competence at various developmental stages. Our experiments reveal that the TnD approach accelerates word acquisition for student models of equal and smaller numbers of parameters, and we highlight the significance of both trials and demonstrations. We further show that the teacher's choices of words influence students' word-specific learning efficiency, and a practice-makes-perfect effect is evident by a strong correlation between the frequency of words in trials and their respective learning curves. Our findings suggest that interactive language learning, with teacher demonstrations and student trials, can facilitate efficient word learning in language models.
GROUNDHOG: Grounding Large Language Models to Holistic Segmentation
Zhang, Yichi, Ma, Ziqiao, Gao, Xiaofeng, Shakiah, Suhaila, Gao, Qiaozi, Chai, Joyce
Most multimodal large language models (MLLMs) learn language-to-object grounding through causal language modeling where grounded objects are captured by bounding boxes as sequences of location tokens. This paradigm lacks pixel-level representations that are important for fine-grained visual understanding and diagnosis. In this work, we introduce GROUNDHOG, an MLLM developed by grounding Large Language Models to holistic segmentation. GROUNDHOG incorporates a masked feature extractor and converts extracted features into visual entity tokens for the MLLM backbone, which then connects groundable phrases to unified grounding masks by retrieving and merging the entity masks. To train GROUNDHOG, we carefully curated M3G2, a grounded visual instruction tuning dataset with Multi-Modal Multi-Grained Grounding, by harvesting a collection of segmentation-grounded datasets with rich annotations. Our experimental results show that GROUNDHOG achieves superior performance on various language grounding tasks without task-specific fine-tuning, and significantly reduces object hallucination. GROUNDHOG also demonstrates better grounding towards complex forms of visual input and provides easy-to-understand diagnosis in failure cases.
Inversion-Free Image Editing with Natural Language
Xu, Sihan, Huang, Yidong, Pan, Jiayi, Ma, Ziqiao, Chai, Joyce
Despite recent advances in inversion-based editing, text-guided image manipulation remains challenging for diffusion models. The primary bottlenecks include 1) the time-consuming nature of the inversion process; 2) the struggle to balance consistency with accuracy; 3) the lack of compatibility with efficient consistency sampling methods used in consistency models. To address the above issues, we start by asking ourselves if the inversion process can be eliminated for editing. We show that when the initial sample is known, a special variance schedule reduces the denoising step to the same form as the multi-step consistency sampling. We name this Denoising Diffusion Consistent Model (DDCM), and note that it implies a virtual inversion strategy without explicit inversion in sampling. We further unify the attention control mechanisms in a tuning-free framework for text-guided editing. Combining them, we present inversion-free editing (InfEdit), which allows for consistent and faithful editing for both rigid and non-rigid semantic changes, catering to intricate modifications without compromising on the image's integrity and explicit inversion. Through extensive experiments, InfEdit shows strong performance in various editing tasks and also maintains a seamless workflow (less than 3 seconds on one single A40), demonstrating the potential for real-time applications. Project Page: https://sled-group.github.io/InfEdit/
Efficient In-Context Learning in Vision-Language Models for Egocentric Videos
Yu, Keunwoo Peter, Zhang, Zheyuan, Hu, Fengyuan, Chai, Joyce
Recent advancements in text-only large language models (LLMs) have highlighted the benefit of in-context learning for adapting to new tasks with a few demonstrations. However, extending in-context learning to large vision-language models (VLMs) using a huge amount of naturalistic vision-language data has shown limited success, particularly for egocentric videos, due to high data collection costs. We propose a novel training method $\mathbb{E}$fficient $\mathbb{I}$n-context $\mathbb{L}$earning on $\mathbb{E}$gocentric $\mathbb{V}$ideos ($\mathbb{EILEV}$), which elicits in-context learning in VLMs for egocentric videos without requiring massive, naturalistic egocentric video datasets. $\mathbb{EILEV}$ involves architectural and training data adaptations to allow the model to process contexts interleaved with video clips and narrations, sampling of in-context examples with clusters of similar verbs and nouns, use of data with skewed marginal distributions with a long tail of infrequent verbs and nouns, as well as homonyms and synonyms. Our evaluations show that $\mathbb{EILEV}$-trained models outperform larger VLMs trained on a huge amount of naturalistic data in in-context learning. Furthermore, they can generalize to not only out-of-distribution, but also novel, rare egocentric videos and texts via in-context learning, demonstrating potential for applications requiring cost-effective training, and rapid post-deployment adaptability. Our code and demo are available at \url{https://github.com/yukw777/EILEV}.
MetaReVision: Meta-Learning with Retrieval for Visually Grounded Compositional Concept Acquisition
Xu, Guangyue, Kordjamshidi, Parisa, Chai, Joyce
Humans have the ability to learn novel compositional concepts by recalling and generalizing primitive concepts acquired from past experiences. Inspired by this observation, in this paper, we propose MetaReVision, a retrieval-enhanced meta-learning model to address the visually grounded compositional concept learning problem. The proposed MetaReVision consists of a retrieval module and a meta-learning module which are designed to incorporate retrieved primitive concepts as a supporting set to meta-train vision-anguage models for grounded compositional concept recognition. Through meta-learning from episodes constructed by the retriever, MetaReVision learns a generic compositional representation that can be fast updated to recognize novel compositional concepts. We create CompCOCO and CompFlickr to benchmark the grounded compositional concept learning. Our experimental results show that MetaReVision outperforms other competitive baselines and the retrieval module plays an important role in this compositional learning process.
Can Foundation Models Watch, Talk and Guide You Step by Step to Make a Cake?
Bao, Yuwei, Yu, Keunwoo Peter, Zhang, Yichi, Storks, Shane, Bar-Yossef, Itamar, De La Iglesia, Alexander, Su, Megan, Zheng, Xiao Lin, Chai, Joyce
Despite tremendous advances in AI, it remains a significant challenge to develop interactive task guidance systems that can offer situated, personalized guidance and assist humans in various tasks. These systems need to have a sophisticated understanding of the user as well as the environment, and make timely accurate decisions on when and what to say. To address this issue, we created a new multimodal benchmark dataset, Watch, Talk and Guide (WTaG) based on natural interaction between a human user and a human instructor. We further proposed two tasks: User and Environment Understanding, and Instructor Decision Making. We leveraged several foundation models to study to what extent these models can be quickly adapted to perceptually enabled task guidance. Our quantitative, qualitative, and human evaluation results show that these models can demonstrate fair performances in some cases with no task-specific training, but a fast and reliable adaptation remains a significant challenge. Our benchmark and baselines will provide a stepping stone for future work on situated task guidance.
Grounding Visual Illusions in Language: Do Vision-Language Models Perceive Illusions Like Humans?
Zhang, Yichi, Pan, Jiayi, Zhou, Yuchen, Pan, Rui, Chai, Joyce
Vision-Language Models (VLMs) are trained on vast amounts of data captured by humans emulating our understanding of the world. However, known as visual illusions, human's perception of reality isn't always faithful to the physical world. This raises a key question: do VLMs have the similar kind of illusions as humans do, or do they faithfully learn to represent reality? To investigate this question, we build a dataset containing five types of visual illusions and formulate four tasks to examine visual illusions in state-of-the-art VLMs. Our findings have shown that although the overall alignment is low, larger models are closer to human perception and more susceptible to visual illusions. Our dataset and initial findings will promote a better understanding of visual illusions in humans and machines and provide a stepping stone for future computational models that can better align humans and machines in perceiving and communicating about the shared visual world. The code and data are available at https://github.com/vl-illusion/dataset.