Calhoun, Vince
Self-Clustering Graph Transformer Approach to Model Resting-State Functional Brain Activity
Thapaliya, Bishal, Akbas, Esra, Sapkota, Ram, Ray, Bhaskar, Calhoun, Vince, Liu, Jingyu
Resting-state functional magnetic resonance imaging (rs-fMRI) offers valuable insights into the human brain's functional organization and is a powerful tool for investigating the relationship between brain function and cognitive processes, as it allows for the functional organization of the brain to be captured without relying on a specific task or stimuli. In this study, we introduce a novel attention mechanism for graphs with subnetworks, named Self-Clustering Graph Transformer (SCGT), designed to handle the issue of uniform node updates in graph transformers. By using static functional connectivity (FC) correlation features as input to the transformer model, SCGT effectively captures the sub-network structure of the brain by performing cluster-specific updates to the nodes, unlike uniform node updates in vanilla graph transformers, further allowing us to learn and interpret the subclusters. We validate our approach on the Adolescent Brain Cognitive Development (ABCD) dataset, comprising 7,957 participants, for the prediction of total cognitive score and gender classification. Our results demonstrate that SCGT outperforms the vanilla graph transformer method and other recent models, offering a promising tool for modeling brain functional connectivity and interpreting the underlying subnetwork structures.
Rethinking Functional Brain Connectome Analysis: Do Graph Deep Learning Models Help?
Han, Keqi, Su, Yao, He, Lifang, Zhan, Liang, Plis, Sergey, Calhoun, Vince, Yang, Carl
Functional brain connectome is crucial for deciphering the neural mechanisms underlying cognitive functions and neurological disorders. Graph deep learning models have recently gained tremendous popularity in this field. However, their actual effectiveness in modeling the brain connectome remains unclear. In this study, we re-examine graph deep learning models based on four large-scale neuroimaging studies encompassing diverse cognitive and clinical outcomes. Surprisingly, we find that the message aggregation mechanism, a hallmark of graph deep learning models, does not help with predictive performance as typically assumed, but rather consistently degrades it. To address this issue, we propose a hybrid model combining a linear model with a graph attention network through dual pathways, achieving robust predictions and enhanced interpretability by revealing both localized and global neural connectivity patterns. Our findings urge caution in adopting complex deep learning models for functional brain connectome analysis, emphasizing the need for rigorous experimental designs to establish tangible performance gains and perhaps more importantly, to pursue improvements in model interpretability.
Copula-Linked Parallel ICA: A Method for Coupling Structural and Functional MRI brain Networks
Agcaoglu, Oktay, Silva, Rogers F., Alacam, Deniz, Plis, Sergey, Adali, Tulay, Calhoun, Vince
Different brain imaging modalities offer unique insights into brain function and structure. Combining them enhances our understanding of neural mechanisms. Prior multimodal studies fusing functional MRI (fMRI) and structural MRI (sMRI) have shown the benefits of this approach. Since sMRI lacks temporal data, existing fusion methods often compress fMRI temporal information into summary measures, sacrificing rich temporal dynamics. Motivated by the observation that covarying networks are identified in both sMRI and resting-state fMRI, we developed a novel fusion method, by combining deep learning frameworks, copulas and independent component analysis (ICA), named copula linked parallel ICA (CLiP-ICA). This method estimates independent sources for each modality and links the spatial sources of fMRI and sMRI using a copula-based model for more flexible integration of temporal and spatial data. We tested CLiP-ICA using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Our results showed that CLiP-ICA effectively captures both strongly and weakly linked sMRI and fMRI networks, including the cerebellum, sensorimotor, visual, cognitive control, and default mode networks. It revealed more meaningful components and fewer artifacts, addressing the long-standing issue of optimal model order in ICA. CLiP-ICA also detected complex functional connectivity patterns across stages of cognitive decline, with cognitively normal subjects generally showing higher connectivity in sensorimotor and visual networks compared to patients with Alzheimer, along with patterns suggesting potential compensatory mechanisms.
Spatial Sequence Attention Network for Schizophrenia Classification from Structural Brain MR Images
Shaik, Nagur Shareef, Cherukuri, Teja Krishna, Calhoun, Vince, Ye, Dong Hye
Schizophrenia is a debilitating, chronic mental disorder that significantly impacts an individual's cognitive abilities, behavior, and social interactions. It is characterized by subtle morphological changes in the brain, particularly in the gray matter. These changes are often imperceptible through manual observation, demanding an automated approach to diagnosis. This study introduces a deep learning methodology for the classification of individuals with Schizophrenia. We achieve this by implementing a diversified attention mechanism known as Spatial Sequence Attention (SSA) which is designed to extract and emphasize significant feature representations from structural MRI (sMRI). Initially, we employ the transfer learning paradigm by leveraging pre-trained DenseNet to extract initial feature maps from the final convolutional block which contains morphological alterations associated with Schizophrenia. These features are further processed by the proposed SSA to capture and emphasize intricate spatial interactions and relationships across volumes within the brain. Our experimental studies conducted on a clinical dataset have revealed that the proposed attention mechanism outperforms the existing Squeeze & Excitation Network for Schizophrenia classification.
DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks
Thapaliya, Bishal, Miller, Robyn, Chen, Jiayu, Wang, Yu-Ping, Akbas, Esra, Sapkota, Ram, Ray, Bhaskar, Suresh, Pranav, Ghimire, Santosh, Calhoun, Vince, Liu, Jingyu
Resting-state functional magnetic resonance imaging (rs-fMRI) is a noninvasive technique pivotal for understanding human neural mechanisms of intricate cognitive processes. Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest, or dynamic functional connectivity matrices with a sliding window approach. These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand. While deep learning has gained substantial popularity for modeling complex relational data, its application to uncovering the spatiotemporal dynamics of the brain is still limited. We propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series and employs a specialized graph neural network for the final classification. Our model, DSAM, leverages temporal causal convolutional networks to capture the temporal dynamics in both low- and high-level feature representations, a temporal attention unit to identify important time points, a self-attention unit to construct the goal-specific connectivity matrix, and a novel variant of graph neural network to capture the spatial dynamics for downstream classification. To validate our approach, we conducted experiments on the Human Connectome Project dataset with 1075 samples to build and interpret the model for the classification of sex group, and the Adolescent Brain Cognitive Development Dataset with 8520 samples for independent testing. Compared our proposed framework with other state-of-art models, results suggested this novel approach goes beyond the assumption of a fixed connectivity matrix and provides evidence of goal-specific brain connectivity patterns, which opens up the potential to gain deeper insights into how the human brain adapts its functional connectivity specific to the task at hand.
Unmasking Efficiency: Learning Salient Sparse Models in Non-IID Federated Learning
Ohib, Riyasat, Thapaliya, Bishal, Dziugaite, Gintare Karolina, Liu, Jingyu, Calhoun, Vince, Plis, Sergey
In this work, we propose Salient Sparse Federated Learning (SSFL), a streamlined approach for sparse federated learning with efficient communication. SSFL identifies a sparse subnetwork prior to training, leveraging parameter saliency scores computed separately on local client data in non-IID scenarios, and then aggregated, to determine a global mask. Only the sparse model weights are communicated each round between the clients and the server. We validate SSFL's effectiveness using standard non-IID benchmarks, noting marked improvements in the sparsity--accuracy trade-offs. Finally, we deploy our method in a real-world federated learning framework and report improvement in communication time.
Brain Networks and Intelligence: A Graph Neural Network Based Approach to Resting State fMRI Data
Thapaliya, Bishal, Akbas, Esra, Chen, Jiayu, Sapkota, Raam, Ray, Bhaskar, Suresh, Pranav, Calhoun, Vince, Liu, Jingyu
Resting-state functional magnetic resonance imaging (rsfMRI) is a powerful tool for investigating the relationship between brain function and cognitive processes as it allows for the functional organization of the brain to be captured without relying on a specific task or stimuli. In this paper, we present a novel modeling architecture called BrainRGIN for predicting intelligence (fluid, crystallized, and total intelligence) using graph neural networks on rsfMRI derived static functional network connectivity matrices. Extending from the existing graph convolution networks, our approach incorporates a clustering-based embedding and graph isomorphism network in the graph convolutional layer to reflect the nature of the brain sub-network organization and efficient network expression, in combination with TopK pooling and attention-based readout functions. We evaluated our proposed architecture on a large dataset, specifically the Adolescent Brain Cognitive Development Dataset, and demonstrated its effectiveness in predicting individual differences in intelligence. Our model achieved lower mean squared errors and higher correlation scores than existing relevant graph architectures and other traditional machine learning models for all of the intelligence prediction tasks. The middle frontal gyrus exhibited a significant contribution to both fluid and crystallized intelligence, suggesting their pivotal role in these cognitive processes. Total composite scores identified a diverse set of brain regions to be relevant which underscores the complex nature of total intelligence.
Pipeline-Invariant Representation Learning for Neuroimaging
Li, Xinhui, Fedorov, Alex, Mathur, Mrinal, Abrol, Anees, Kiar, Gregory, Plis, Sergey, Calhoun, Vince
Deep learning has been widely applied in neuroimaging, including predicting brain-phenotype relationships from magnetic resonance imaging (MRI) volumes. MRI data usually requires extensive preprocessing prior to modeling, but variation introduced by different MRI preprocessing pipelines may lead to different scientific findings, even when using the identical data. Motivated by the data-centric perspective, we first evaluate how preprocessing pipeline selection can impact the downstream performance of a supervised learning model. We next propose two pipeline-invariant representation learning methodologies, MPSL and PXL, to improve robustness in classification performance and to capture similar neural network representations. Using 2000 human subjects from the UK Biobank dataset, we demonstrate that proposed models present unique and shared advantages, in particular that MPSL can be used to improve out-of-sample generalization to new pipelines, while PXL can be used to improve within-sample prediction performance. Both MPSL and PXL can learn more similar between-pipeline representations. These results suggest that our proposed models can be applied to mitigate pipeline-related biases, and to improve prediction robustness in brain-phenotype modeling.
Learning low-dimensional dynamics from whole-brain data improves task capture
Geenjaar, Eloy, Kim, Donghyun, Ohib, Riyasat, Duda, Marlena, Kashyap, Amrit, Plis, Sergey, Calhoun, Vince
The neural dynamics underlying brain activity are critical to understanding cognitive processes and mental disorders. However, current voxel-based whole-brain dimensionality reduction techniques fall short of capturing these dynamics, producing latent timeseries that inadequately relate to behavioral tasks. To address this issue, we introduce a novel approach to learning low-dimensional approximations of neural dynamics by using a sequential variational autoencoder (SVAE) that represents the latent dynamical system via a neural ordinary differential equation (NODE). Importantly, our method finds smooth dynamics that can predict cognitive processes with accuracy higher than classical methods. Our method also shows improved spatial localization to task-relevant brain regions and identifies well-known structures such as the motor homunculus from fMRI motor task recordings. We also find that non-linear projections to the latent space enhance performance for specific tasks, offering a promising direction for future research. We evaluate our approach on various task-fMRI datasets, including motor, working memory, and relational processing tasks, and demonstrate that it outperforms widely used dimensionality reduction techniques in how well the latent timeseries relates to behavioral sub-tasks, such as left-hand or right-hand tapping. Additionally, we replace the NODE with a recurrent neural network (RNN) and compare the two approaches to understand the importance of explicitly learning a dynamical system. Lastly, we analyze the robustness of the learned dynamical systems themselves and find that their fixed points are robust across seeds, highlighting our method's potential for the analysis of cognitive processes as dynamical systems.
SalientGrads: Sparse Models for Communication Efficient and Data Aware Distributed Federated Training
Ohib, Riyasat, Thapaliya, Bishal, Gaggenapalli, Pratyush, Liu, Jingyu, Calhoun, Vince, Plis, Sergey
Federated learning (FL) enables the training of a model leveraging decentralized data in client sites while preserving privacy by not collecting data. However, one of the significant challenges of FL is limited computation and low communication bandwidth in resource limited edge client nodes. To address this, several solutions have been proposed in recent times including transmitting sparse models and learning dynamic masks iteratively, among others. However, many of these methods rely on transmitting the model weights throughout the entire training process as they are based on ad-hoc or random pruning criteria. In this work, we propose Salient Grads, which simplifies the process of sparse training by choosing a data aware subnetwork before training, based on the model-parameter's saliency scores, which is calculated from the local client data. Moreover only highly sparse gradients are transmitted between the server and client models during the training process unlike most methods that rely on sharing the entire dense model in each round. We also demonstrate the efficacy of our method in a real world federated learning application and report improvement in wall-clock communication time.