Borchers, Conrad
An Integrated Platform for Studying Learning with Intelligent Tutoring Systems: CTAT+TutorShop
Aleven, Vincent, Borchers, Conrad, Huang, Yun, Nagashima, Tomohiro, McLaren, Bruce, Carvalho, Paulo, Popescu, Octav, Sewall, Jonathan, Koedinger, Kenneth
Intelligent tutoring systems (ITSs) are effective in helping students learn; further research could make them even more effective. Particularly desirable is research into how students learn with these systems, how these systems best support student learning, and what learning sciences principles are key in ITSs. CTAT+Tutorshop provides a full stack integrated platform that facilitates a complete research lifecycle with ITSs, which includes using ITS data to discover learner challenges, to identify opportunities for system improvements, and to conduct experimental studies. The platform includes authoring tools to support and accelerate development of ITS, which provide automatic data logging in a format compatible with DataShop, an independent site that supports the analysis of ed tech log data to study student learnings. Among the many technology platforms that exist to support learning sciences research, CTAT+Tutorshop may be the only one that offers researchers the possibility to author elements of ITSs, or whole ITSs, as part of designing studies. This platform has been used to develop and conduct an estimated 147 research studies which have run in a wide variety of laboratory and real-world educational settings, including K-12 and higher education, and have addressed a wide range of research questions. This paper presents five case studies of research conducted on the CTAT+Tutorshop platform, and summarizes what has been accomplished and what is possible for future researchers. We reflect on the distinctive elements of this platform that have made it so effective in facilitating a wide range of ITS research.
Augmenting Human-Annotated Training Data with Large Language Model Generation and Distillation in Open-Response Assessment
Borchers, Conrad, Thomas, Danielle R., Lin, Jionghao, Abboud, Ralph, Koedinger, Kenneth R.
Large Language Models (LLMs) like GPT-4o can help automate text classification tasks at low cost and scale. However, there are major concerns about the validity and reliability of LLM outputs. By contrast, human coding is generally more reliable but expensive to procure at scale. In this study, we propose a hybrid solution to leverage the strengths of both. We combine human-coded data and synthetic LLM-produced data to fine-tune a classical machine learning classifier, distilling both into a smaller BERT model. We evaluate our method on a human-coded test set as a validity measure for LLM output quality. In three experiments, we systematically vary LLM-generated samples' size, variety, and consistency, informed by best practices in LLM tuning. Our findings indicate that augmenting datasets with synthetic samples improves classifier performance, with optimal results achieved at an 80% synthetic to 20% human-coded data ratio. Lower temperature settings of 0.3, corresponding to less variability in LLM generations, produced more stable improvements but also limited model learning from augmented samples. In contrast, higher temperature settings (0.7 and above) introduced greater variability in performance estimates and, at times, lower performance. Hence, LLMs may produce more uniform output that classifiers overfit to earlier or produce more diverse output that runs the risk of deteriorating model performance through information irrelevant to the prediction task. Filtering out inconsistent synthetic samples did not enhance performance. We conclude that integrating human and LLM-generated data to improve text classification models in assessment offers a scalable solution that leverages both the accuracy of human coding and the variety of LLM outputs.
Toward Sufficient Statistical Power in Algorithmic Bias Assessment: A Test for ABROCA
Borchers, Conrad
Algorithmic bias is a pressing concern in educational data mining (EDM), as it risks amplifying inequities in learning outcomes. The Area Between ROC Curves (ABROCA) metric is frequently used to measure discrepancies in model performance across demographic groups to quantify overall model fairness. However, its skewed distribution--especially when class or group imbalances exist--makes significance testing challenging. This study investigates ABROCA's distributional properties and contributes robust methods for its significance testing. Specifically, we address (1) whether ABROCA follows any known distribution, (2) how to reliably test for algorithmic bias using ABROCA, and (3) the statistical power achievable with ABROCA-based bias assessments under typical EDM sample specifications. Simulation results confirm that ABROCA does not match standard distributions, including those suited to accommodate skewness. We propose nonparametric randomization tests for ABROCA and demonstrate that reliably detecting bias with ABROCA requires large sample sizes or substantial effect sizes, particularly in imbalanced settings. Findings suggest that ABROCA-based bias evaluation based on sample sizes common in EDM tends to be underpowered, undermining the reliability of conclusions about model fairness. By offering open-source code to simulate power and statistically test ABROCA, this paper aims to foster more reliable statistical testing in EDM research. It supports broader efforts toward replicability and equity in educational modeling.
Data Augmentation for Sparse Multidimensional Learning Performance Data Using Generative AI
Zhang, Liang, Lin, Jionghao, Sabatini, John, Borchers, Conrad, Weitekamp, Daniel, Cao, Meng, Hollander, John, Hu, Xiangen, Graesser, Arthur C.
Learning performance data describe correct and incorrect answers or problem-solving attempts in adaptive learning, such as in intelligent tutoring systems (ITSs). Learning performance data tend to be highly sparse (80\%\(\sim\)90\% missing observations) in most real-world applications due to adaptive item selection. This data sparsity presents challenges to using learner models to effectively predict future performance explore new hypotheses about learning. This article proposes a systematic framework for augmenting learner data to address data sparsity in learning performance data. First, learning performance is represented as a three-dimensional tensor of learners' questions, answers, and attempts, capturing longitudinal knowledge states during learning. Second, a tensor factorization method is used to impute missing values in sparse tensors of collected learner data, thereby grounding the imputation on knowledge tracing tasks that predict missing performance values based on real observations. Third, a module for generating patterns of learning is used. This study contrasts two forms of generative Artificial Intelligence (AI), including Generative Adversarial Networks (GANs) and Generate Pre-Trained Transformers (GPT) to generate data associated with different clusters of learner data. We tested this approach on an adult literacy dataset from AutoTutor lessons developed for Adult Reading Comprehension (ARC). We found that: (1) tensor factorization improved the performance in tracing and predicting knowledge mastery compared with other knowledge tracing techniques without data augmentation, showing higher relative fidelity for this imputation method, and (2) the GAN-based simulation showed greater overall stability and less statistical bias based on a divergence evaluation with varying simulation sample sizes compared to GPT.
Combining Large Language Models with Tutoring System Intelligence: A Case Study in Caregiver Homework Support
Venugopalan, Devika, Yan, Ziwen, Borchers, Conrad, Lin, Jionghao, Aleven, Vincent
Caregivers (i.e., parents and members of a child's caring community) are underappreciated stakeholders in learning analytics. Although caregiver involvement can enhance student academic outcomes, many obstacles hinder involvement, most notably knowledge gaps with respect to modern school curricula. An emerging topic of interest in learning analytics is hybrid tutoring, which includes instructional and motivational support. Caregivers assert similar roles in homework, yet it is unknown how learning analytics can support them. Our past work with caregivers suggested that conversational support is a promising method of providing caregivers with the guidance needed to effectively support student learning. We developed a system that provides instructional support to caregivers through conversational recommendations generated by a Large Language Model (LLM). Addressing known instructional limitations of LLMs, we use instructional intelligence from tutoring systems while conducting prompt engineering experiments with the open-source Llama 3 LLM. This LLM generated message recommendations for caregivers supporting their child's math practice via chat. Few-shot prompting and combining real-time problem-solving context from tutoring systems with examples of tutoring practices yielded desirable message recommendations. These recommendations were evaluated with ten middle school caregivers, who valued recommendations facilitating content-level support and student metacognition through self-explanation. We contribute insights into how tutoring systems can best be merged with LLMs to support hybrid tutoring settings through conversational assistance, facilitating effective caregiver involvement in tutoring systems.
Do Tutors Learn from Equity Training and Can Generative AI Assess It?
Thomas, Danielle R., Borchers, Conrad, Kakarla, Sanjit, Lin, Jionghao, Bhushan, Shambhavi, Guo, Boyuan, Gatz, Erin, Koedinger, Kenneth R.
Equity is a core concern of learning analytics. However, applications that teach and assess equity skills, particularly at scale are lacking, often due to barriers in evaluating language. Advances in generative AI via large language models (LLMs) are being used in a wide range of applications, with this present work assessing its use in the equity domain. We evaluate tutor performance within an online lesson on enhancing tutors' skills when responding to students in potentially inequitable situations. We apply a mixed-method approach to analyze the performance of 81 undergraduate remote tutors. We find marginally significant learning gains with increases in tutors' self-reported confidence in their knowledge in responding to middle school students experiencing possible inequities from pretest to posttest. Both GPT-4o and GPT-4-turbo demonstrate proficiency in assessing tutors ability to predict and explain the best approach. Balancing performance, efficiency, and cost, we determine that few-shot learning using GPT-4o is the preferred model. This work makes available a dataset of lesson log data, tutor responses, rubrics for human annotation, and generative AI prompts. Future work involves leveling the difficulty among scenarios and enhancing LLM prompts for large-scale grading and assessment.
Does Multiple Choice Have a Future in the Age of Generative AI? A Posttest-only RCT
Thomas, Danielle R., Borchers, Conrad, Kakarla, Sanjit, Lin, Jionghao, Bhushan, Shambhavi, Guo, Boyuan, Gatz, Erin, Koedinger, Kenneth R.
The role of multiple-choice questions (MCQs) as effective learning tools has been debated in past research. While MCQs are widely used due to their ease in grading, open response questions are increasingly used for instruction, given advances in large language models (LLMs) for automated grading. This study evaluates MCQs effectiveness relative to open-response questions, both individually and in combination, on learning. These activities are embedded within six tutor lessons on advocacy. Using a posttest-only randomized control design, we compare the performance of 234 tutors (790 lesson completions) across three conditions: MCQ only, open response only, and a combination of both. We find no significant learning differences across conditions at posttest, but tutors in the MCQ condition took significantly less time to complete instruction. These findings suggest that MCQs are as effective, and more efficient, than open response tasks for learning when practice time is limited. To further enhance efficiency, we autograded open responses using GPT-4o and GPT-4-turbo. GPT models demonstrate proficiency for purposes of low-stakes assessment, though further research is needed for broader use. This study contributes a dataset of lesson log data, human annotation rubrics, and LLM prompts to promote transparency and reproducibility.
Evaluating the Impact of Data Augmentation on Predictive Model Performance
ล vรกbenskรฝ, Valdemar, Borchers, Conrad, Cloude, Elizabeth B., Shimada, Atsushi
In supervised machine learning (SML) research, large training datasets are essential for valid results. However, obtaining primary data in learning analytics (LA) is challenging. Data augmentation can address this by expanding and diversifying data, though its use in LA remains underexplored. This paper systematically compares data augmentation techniques and their impact on prediction performance in a typical LA task: prediction of academic outcomes. Augmentation is demonstrated on four SML models, which we successfully replicated from a previous LAK study based on AUC values. Among 21 augmentation techniques, SMOTE-ENN sampling performed the best, improving the average AUC by 0.01 and approximately halving the training time compared to the baseline models. In addition, we compared 99 combinations of chaining 21 techniques, and found minor, although statistically significant, improvements across models when adding noise to SMOTE-ENN (+0.014). Notably, some augmentation techniques significantly lowered predictive performance or increased performance fluctuation related to random chance. This paper's contribution is twofold. Primarily, our empirical findings show that sampling techniques provide the most statistically reliable performance improvements for LA applications of SML, and are computationally more efficient than deep generation methods with complex hyperparameter settings. Second, the LA community may benefit from validating a recent study through independent replication.
ABROCA Distributions For Algorithmic Bias Assessment: Considerations Around Interpretation
Borchers, Conrad, Baker, Ryan S.
Algorithmic bias is of critical concern within education as it could undermine the effectiveness of learning analytics. While different definitions and conceptualizations of algorithmic bias and fairness exist [2], their common denominator typically revolves around systematic unfairness or unequal treatment of groups caused by algorithms. This bias occurs when an algorithm produces results that disproportionately disadvantage or favor particular groups of people based on non-malleable characteristics like race, gender, or socioeconomic status [7]. Recent learning analytics research argued that although the vast majority of published papers investigating algorithmic bias in education find evidence of bias [2], some predictive models appear to achieve fairness, with minimal difference in model quality across demographic groups. For example, Zambrano et al. [18] evaluated careless detectors and Bayesian knowledge tracing models, finding near-equal performance across groups defined by race, gender, socioeconomic status, special needs, and English language learner status. Similarly, Jiang and Pardos [10] compared accuracies of grade prediction models across ethnic groups, concluding that an adversarial learning approach led to the fairest models but did not engage in the question of whether their fairest model was sufficiently fair.
Gaining Insights into Group-Level Course Difficulty via Differential Course Functioning
Baucks, Frederik, Schmucker, Robin, Borchers, Conrad, Pardos, Zachary A., Wiskott, Laurenz
Curriculum Analytics (CA) studies curriculum structure and student data to ensure the quality of educational programs. One desirable property of courses within curricula is that they are not unexpectedly more difficult for students of different backgrounds. While prior work points to likely variations in course difficulty across student groups, robust methodologies for capturing such variations are scarce, and existing approaches do not adequately decouple course-specific difficulty from students' general performance levels. The present study introduces Differential Course Functioning (DCF) as an Item Response Theory (IRT)-based CA methodology. DCF controls for student performance levels and examines whether significant differences exist in how distinct student groups succeed in a given course. Leveraging data from over 20,000 students at a large public university, we demonstrate DCF's ability to detect inequities in undergraduate course difficulty across student groups described by grade achievement. We compare major pairs with high co-enrollment and transfer students to their non-transfer peers. For the former, our findings suggest a link between DCF effect sizes and the alignment of course content to student home department motivating interventions targeted towards improving course preparedness. For the latter, results suggest minor variations in course-specific difficulty between transfer and non-transfer students. While this is desirable, it also suggests that interventions targeted toward mitigating grade achievement gaps in transfer students should encompass comprehensive support beyond enhancing preparedness for individual courses. By providing more nuanced and equitable assessments of academic performance and difficulties experienced by diverse student populations, DCF could support policymakers, course articulation officers, and student advisors.