Bianco, Simone
Visual RAG: Expanding MLLM visual knowledge without fine-tuning
Bonomo, Mirco, Bianco, Simone
Multimodal Large Language Models (MLLMs) have achieved notable performance in computer vision tasks that require reasoning across visual and textual modalities, yet their capabilities are limited to their pre-trained data, requiring extensive fine-tuning for updates. Recent researches have explored the use of In-Context Learning (ICL) to overcome these challenges by providing a set of demonstrating examples as context to augment MLLMs performance in several tasks, showing that many-shot ICL leads to substantial improvements compared to few-shot ICL. However, the reliance on numerous demonstrating examples and the limited MLLMs context windows presents significant obstacles. This paper aims to address these challenges by introducing a novel approach, Visual RAG, that synergically combines the MLLMs capability to learn from the context, with a retrieval mechanism. The crux of this approach is to ensure to augment the MLLM knowledge by selecting only the most relevant demonstrating examples for the query, pushing it to learn by analogy. In this way, relying on the new information provided dynamically during inference time, the resulting system is not limited to the knowledge extracted from the training data, but can be updated rapidly and easily without fine-tuning. Furthermore, this greatly reduces the computational costs for improving the model image classification performance, and augments the model knowledge to new visual domains and tasks it was not trained for. Extensive experiments on eight different datasets in the state of the art spanning several domains and image classification tasks show that the proposed Visual RAG, compared to the most recent state of the art (i.e., many-shot ICL), is able to obtain an accuracy that is very close or even higher (approx. +2% improvement on average) while using a much smaller set of demonstrating examples (approx. only 23% on average).
Cross-Camera Distracted Driver Classification through Feature Disentanglement and Contrastive Learning
Bianco, Simone, Celona, Luigi, Napoletano, Paolo
The classification of distracted drivers is pivotal for ensuring safe driving. Previous studies demonstrated the effectiveness of neural networks in automatically predicting driver distraction, fatigue, and potential hazards. However, recent research has uncovered a significant loss of accuracy in these models when applied to samples acquired under conditions that differ from the training data. In this paper, we introduce a robust model designed to withstand changes in camera position within the vehicle. Our Driver Behavior Monitoring Network (DBMNet) relies on a lightweight backbone and integrates a disentanglement module to discard camera view information from features, coupled with contrastive learning to enhance the encoding of various driver actions. Experiments conducted on the daytime and nighttime subsets of the 100-Driver dataset validate the effectiveness of our approach with an increment on average of 9\% in Top-1 accuracy in comparison with the state of the art. In addition, cross-dataset and cross-camera experiments conducted on three benchmark datasets, namely AUCDD-V1, EZZ2021 and SFD, demonstrate the superior generalization capability of the proposed method.
Pathspace Kalman Filters with Dynamic Process Uncertainty for Analyzing Time-course Data
Agrahar, Chaitra, Poole, William, Bianco, Simone, El-Samad, Hana
Kalman Filter (KF) is an optimal linear state prediction algorithm, with applications in fields as diverse as engineering, economics, robotics, and space exploration. Here, we develop an extension of the KF, called a Pathspace Kalman Filter (PKF) which allows us to a) dynamically track the uncertainties associated with the underlying data and prior knowledge, and b) take as input an entire trajectory and an underlying mechanistic model, and using a Bayesian methodology quantify the different sources of uncertainty. An application of this algorithm is to automatically detect temporal windows where the internal mechanistic model deviates from the data in a time-dependent manner. First, we provide theorems characterizing the convergence of the PKF algorithm. Then, we numerically demonstrate that the PKF outperforms conventional KF methods on a synthetic dataset lowering the mean-squared-error by several orders of magnitude. Finally, we apply this method to biological time-course dataset involving over 1.8 million gene expression measurements.
Semi-supervised cross-lingual speech emotion recognition
Agarla, Mirko, Bianco, Simone, Celona, Luigi, Napoletano, Paolo, Petrovsky, Alexey, Piccoli, Flavio, Schettini, Raimondo, Shanin, Ivan
Performance in Speech Emotion Recognition (SER) on a single language has increased greatly in the last few years thanks to the use of deep learning techniques. However, cross-lingual SER remains a challenge in real-world applications due to two main factors: the first is the big gap among the source and the target domain distributions; the second factor is the major availability of unlabeled utterances in contrast to the labeled ones for the new language. Taking into account previous aspects, we propose a Semi-Supervised Learning (SSL) method for cross-lingual emotion recognition when only few labeled examples in the target domain (i.e. the new language) are available. Our method is based on a Transformer and it adapts to the new domain by exploiting a pseudo-labeling strategy on the unlabeled utterances. In particular, the use of a hard and soft pseudo-labels approach is investigated. We thoroughly evaluate the performance of the proposed method in a speaker-independent setup on both the source and the new language and show its robustness across five languages belonging to different linguistic strains. The experimental findings indicate that the unweighted accuracy is increased by an average of 40% compared to state-of-the-art methods.
Improving Image Captioning Descriptiveness by Ranking and LLM-based Fusion
Bianco, Simone, Celona, Luigi, Donzella, Marco, Napoletano, Paolo
State-of-The-Art (SoTA) image captioning models often rely on the Microsoft COCO (MS-COCO) dataset for training. This dataset contains annotations provided by human annotators, who typically produce captions averaging around ten tokens. However, this constraint presents a challenge in effectively capturing complex scenes and conveying detailed information. Furthermore, captioning models tend to exhibit bias towards the ``average'' caption, which captures only the more general aspects. What would happen if we were able to automatically generate longer captions, thereby making them more detailed? Would these captions, evaluated by humans, be more or less representative of the image content compared to the original MS-COCO captions? In this paper, we present a novel approach to address previous challenges by showcasing how captions generated from different SoTA models can be effectively fused, resulting in richer captions. Our proposed method leverages existing models from the literature, eliminating the need for additional training. Instead, it utilizes an image-text based metric to rank the captions generated by SoTA models for a given image. Subsequently, the top two captions are fused using a Large Language Model (LLM). Experimental results demonstrate the effectiveness of our approach, as the captions generated by our model exhibit higher consistency with human judgment when evaluated on the MS-COCO test set. By combining the strengths of various SoTA models, our method enhances the quality and appeal of image captions, bridging the gap between automated systems and the rich, informative nature of human-generated descriptions. This advance opens up new possibilities for generating captions that are more suitable for the training of both vision-language and captioning models.
CURL: Co-trained Unsupervised Representation Learning for Image Classification
Bianco, Simone, Ciocca, Gianluigi, Cusano, Claudio
In this paper we propose a strategy for semi-supervised image classification that leverages unsupervised representation learning and co-training. The strategy, that is called CURL from Co-trained Unsupervised Representation Learning, iteratively builds two classifiers on two different views of the data. The two views correspond to different representations learned from both labeled and unlabeled data and differ in the fusion scheme used to combine the image features. To assess the performance of our proposal, we conducted several experiments on widely used data sets for scene and object recognition. We considered three scenarios (inductive, transductive and self-taught learning) that differ in the strategy followed to exploit the unlabeled data. As image features we considered a combination of GIST, PHOG, and LBP as well as features extracted from a Convolutional Neural Network. Moreover, two embodiments of CURL are investigated: one using Ensemble Projection as unsupervised representation learning coupled with Logistic Regression, and one based on LapSVM. The results show that CURL clearly outperforms other supervised and semi-supervised learning methods in the state of the art.