Goto

Collaborating Authors

 Bhagoji, Arjun Nitin


MYCROFT: Towards Effective and Efficient External Data Augmentation

arXiv.org Artificial Intelligence

Machine learning (ML) models often require large amounts of data to perform well. When the available data is limited, model trainers may need to acquire more data from external sources. Often, useful data is held by private entities who are hesitant to share their data due to propriety and privacy concerns. This makes it challenging and expensive for model trainers to acquire the data they need to improve model performance. To address this challenge, we propose Mycroft, a data-efficient method that enables model trainers to evaluate the relative utility of different data sources while working with a constrained data-sharing budget. By leveraging feature space distances and gradient matching, Mycroft identifies small but informative data subsets from each owner, allowing model trainers to maximize performance with minimal data exposure. Experimental results across four tasks in two domains show that Mycroft converges rapidly to the performance of the full-information baseline, where all data is shared. Moreover, Mycroft is robust to noise and can effectively rank data owners by utility. Mycroft can pave the way for democratized training of high performance ML models.


Towards Scalable and Robust Model Versioning

arXiv.org Artificial Intelligence

As the deployment of deep learning models continues to expand across industries, the threat of malicious incursions aimed at gaining access to these deployed models is on the rise. Should an attacker gain access to a deployed model, whether through server breaches, insider attacks, or model inversion techniques, they can then construct white-box adversarial attacks to manipulate the model's classification outcomes, thereby posing significant risks to organizations that rely on these models for critical tasks. Model owners need mechanisms to protect themselves against such losses without the necessity of acquiring fresh training data - a process that typically demands substantial investments in time and capital. In this paper, we explore the feasibility of generating multiple versions of a model that possess different attack properties, without acquiring new training data or changing model architecture. The model owner can deploy one version at a time and replace a leaked version immediately with a new version. The newly deployed model version can resist adversarial attacks generated leveraging white-box access to one or all previously leaked versions. We show theoretically that this can be accomplished by incorporating parameterized hidden distributions into the model training data, forcing the model to learn task-irrelevant features uniquely defined by the chosen data. Additionally, optimal choices of hidden distributions can produce a sequence of model versions capable of resisting compound transferability attacks over time. Leveraging our analytical insights, we design and implement a practical model versioning method for DNN classifiers, which leads to significant robustness improvements over existing methods. We believe our work presents a promising direction for safeguarding DNN services beyond their initial deployment.


Characterizing the Optimal 0-1 Loss for Multi-class Classification with a Test-time Attacker

arXiv.org Artificial Intelligence

Finding classifiers robust to adversarial examples is critical for their safe deployment. Determining the robustness of the best possible classifier under a given threat model for a given data distribution and comparing it to that achieved by state-of-the-art training methods is thus an important diagnostic tool. In this paper, we find achievable information-theoretic lower bounds on loss in the presence of a test-time attacker for multi-class classifiers on any discrete dataset. We provide a general framework for finding the optimal 0-1 loss that revolves around the construction of a conflict hypergraph from the data and adversarial constraints. We further define other variants of the attacker-classifier game that determine the range of the optimal loss more efficiently than the full-fledged hypergraph construction. Our evaluation shows, for the first time, an analysis of the gap to optimal robustness for classifiers in the multi-class setting on benchmark datasets.


Augmenting Rule-based DNS Censorship Detection at Scale with Machine Learning

arXiv.org Artificial Intelligence

The proliferation of global censorship has led to the development of a plethora of measurement platforms to monitor and expose it. Censorship of the domain name system (DNS) is a key mechanism used across different countries. It is currently detected by applying heuristics to samples of DNS queries and responses (probes) for specific destinations. These heuristics, however, are both platform-specific and have been found to be brittle when censors change their blocking behavior, necessitating a more reliable automated process for detecting censorship. In this paper, we explore how machine learning (ML) models can (1) help streamline the detection process, (2) improve the potential of using large-scale datasets for censorship detection, and (3) discover new censorship instances and blocking signatures missed by existing heuristic methods. Our study shows that supervised models, trained using expert-derived labels on instances of known anomalies and possible censorship, can learn the detection heuristics employed by different measurement platforms. More crucially, we find that unsupervised models, trained solely on uncensored instances, can identify new instances and variations of censorship missed by existing heuristics. Moreover, both methods demonstrate the capability to uncover a substantial number of new DNS blocking signatures, i.e., injected fake IP addresses overlooked by existing heuristics. These results are underpinned by an important methodological finding: comparing the outputs of models trained using the same probes but with labels arising from independent processes allows us to more reliably detect cases of censorship in the absence of ground-truth labels of censorship.


On the Permanence of Backdoors in Evolving Models

arXiv.org Artificial Intelligence

Existing research on training-time attacks for deep neural networks (DNNs), such as backdoors, largely assume that models are static once trained, and hidden backdoors trained into models remain active indefinitely. In practice, models are rarely static but evolve continuously to address distribution drifts in the underlying data. This paper explores the behavior of backdoor attacks in time-varying models, whose model weights are continually updated via fine-tuning to adapt to data drifts. Our theoretical analysis shows how fine-tuning with fresh data progressively "erases" the injected backdoors, and our empirical study illustrates how quickly a time-varying model "forgets" backdoors under a variety of training and attack settings. We also show that novel fine-tuning strategies using smart learning rates can significantly accelerate backdoor forgetting. Finally, we discuss the need for new backdoor defenses that target time-varying models specifically.


LEAF: Navigating Concept Drift in Cellular Networks

arXiv.org Artificial Intelligence

Operational networks commonly rely on machine learning models for many tasks, including detecting anomalies, inferring application performance, and forecasting demand. Yet, model accuracy can degrade due to concept drift, whereby the relationship between the features and the target to be predicted changes. Mitigating concept drift is an essential part of operationalizing machine learning models in general, but is of particular importance in networking's highly dynamic deployment environments. In this paper, we first characterize concept drift in a large cellular network for a major metropolitan area in the United States. We find that concept drift occurs across many important key performance indicators (KPIs), independently of the model, training set size, and time interval -- thus necessitating practical approaches to detect, explain, and mitigate it. We then show that frequent model retraining with newly available data is not sufficient to mitigate concept drift, and can even degrade model accuracy further. Finally, we develop a new methodology for concept drift mitigation, Local Error Approximation of Features (LEAF). LEAF works by detecting drift; explaining the features and time intervals that contribute the most to drift; and mitigates it using forgetting and over-sampling. We evaluate LEAF against industry-standard mitigation approaches (notably, periodic retraining) with more than four years of cellular KPI data. Our initial tests with a major cellular provider in the US show that LEAF consistently outperforms periodic and triggered retraining on complex, real-world data while reducing costly retraining operations.


Lower Bounds on Cross-Entropy Loss in the Presence of Test-time Adversaries

arXiv.org Artificial Intelligence

Understanding the fundamental limits of robust supervised learning has emerged as a problem of immense interest, from both practical and theoretical standpoints. In particular, it is critical to determine classifier-agnostic bounds on the training loss to establish when learning is possible. In this paper, we determine optimal lower bounds on the cross-entropy loss in the presence of test-time adversaries, along with the corresponding optimal classification outputs. Our formulation of the bound as a solution to an optimization problem is general enough to encompass any loss function depending on soft classifier outputs. We also propose and provide a proof of correctness for a bespoke algorithm to compute this lower bound efficiently, allowing us to determine lower bounds for multiple practical datasets of interest. We use our lower bounds as a diagnostic tool to determine the effectiveness of current robust training methods and find a gap from optimality at larger budgets. Finally, we investigate the possibility of using of optimal classification outputs as soft labels to empirically improve robust training.


PatchGuard: A Provably Robust Defense against Adversarial Patches via Small Receptive Fields and Masking

arXiv.org Machine Learning

Localized adversarial patches aim to induce misclassification in machine learning models by arbitrarily modifying pixels within a restricted region of an image. Such attacks can be realized in the physical world by attaching the adversarial patch to the object to be misclassified, and defending against such attacks is an unsolved/open problem. In this paper, we propose a general defense framework called PatchGuard that can achieve high provable robustness while maintaining high clean accuracy against localized adversarial patches. The cornerstone of PatchGuard involves the use of CNNs with small receptive fields to impose a bound on the number of features corrupted by an adversarial patch. Given a bounded number of corrupted features, the problem of designing an adversarial patch defense reduces to that of designing a secure feature aggregation mechanism. Towards this end, we present our robust masking defense that robustly detects and masks corrupted features to recover the correct prediction. Our extensive evaluation on ImageNet, ImageNette (a 10-class subset of ImageNet), and CIFAR-10 datasets demonstrates that our defense achieves state-of-the-art performance in terms of both provable robust accuracy and clean accuracy.


Lower Bounds on Adversarial Robustness from Optimal Transport

Neural Information Processing Systems

While progress has been made in understanding the robustness of machine learning classifiers to test-time adversaries (evasion attacks), fundamental questions remain unresolved. In this paper, we use optimal transport to characterize the maximum achievable accuracy in an adversarial classification scenario. In this setting, an adversary receives a random labeled example from one of two classes, perturbs the example subject to a neighborhood constraint, and presents the modified example to the classifier. We define an appropriate cost function such that the minimum transportation cost between the distributions of the two classes determines the \emph{minimum $0-1$ loss for any classifier}. When the classifier comes from a restricted hypothesis class, the optimal transportation cost provides a lower bound.


Lower Bounds on Adversarial Robustness from Optimal Transport

arXiv.org Machine Learning

While progress has been made in understanding the robustness of machine learning classifiers to test-time adversaries (evasion attacks), fundamental questions remain unresolved. In this paper, we use optimal transport to characterize the minimum possible loss in an adversarial classification scenario. In this setting, an adversary receives a random labeled example from one of two classes, perturbs the example subject to a neighborhood constraint, and presents the modified example to the classifier. We define an appropriate cost function such that the minimum transportation cost between the distributions of the two classes determines the minimum $0-1$ loss for any classifier. When the classifier comes from a restricted hypothesis class, the optimal transportation cost provides a lower bound. We apply our framework to the case of Gaussian data with norm-bounded adversaries and explicitly show matching bounds for the classification and transport problems as well as the optimality of linear classifiers. We also characterize the sample complexity of learning in this setting, deriving and extending previously known results as a special case. Finally, we use our framework to study the gap between the optimal classification performance possible and that currently achieved by state-of-the-art robustly trained neural networks for datasets of interest, namely, MNIST, Fashion MNIST and CIFAR-10.