Lower Bounds on Adversarial Robustness from Optimal Transport

Bhagoji, Arjun Nitin, Cullina, Daniel, Mittal, Prateek

Neural Information Processing Systems 

While progress has been made in understanding the robustness of machine learning classifiers to test-time adversaries (evasion attacks), fundamental questions remain unresolved. In this paper, we use optimal transport to characterize the maximum achievable accuracy in an adversarial classification scenario. In this setting, an adversary receives a random labeled example from one of two classes, perturbs the example subject to a neighborhood constraint, and presents the modified example to the classifier. We define an appropriate cost function such that the minimum transportation cost between the distributions of the two classes determines the \emph{minimum $0-1$ loss for any classifier}. When the classifier comes from a restricted hypothesis class, the optimal transportation cost provides a lower bound.