Goto

Collaborating Authors

 Bensalem, Saddek


Mitigating Hallucinations in YOLO-based Object Detection Models: A Revisit to Out-of-Distribution Detection

arXiv.org Artificial Intelligence

Object detection systems must reliably perceive objects of interest without being overly confident to ensure safe decision-making in dynamic environments. Filtering techniques based on out-of-distribution (OoD) detection are commonly added as an extra safeguard to filter hallucinations caused by overconfidence in novel objects. Nevertheless, evaluating YOLO-family detectors and their filters under existing OoD benchmarks often leads to unsatisfactory performance. This paper studies the underlying reasons for performance bottlenecks and proposes a methodology to improve performance fundamentally. Our first contribution is a calibration of all existing evaluation results: Although images in existing OoD benchmark datasets are claimed not to have objects within in-distribution (ID) classes (i.e., categories defined in the training dataset), around 13% of objects detected by the object detector are actually ID objects. Dually, the ID dataset containing OoD objects can also negatively impact the decision boundary of filters. These ultimately lead to a significantly imprecise performance estimation. Our second contribution is to consider the task of hallucination reduction as a joint pipeline of detectors and filters. By developing a methodology to carefully synthesize an OoD dataset that semantically resembles the objects to be detected, and using the crafted OoD dataset in the fine-tuning of YOLO detectors to suppress the objectness score, we achieve a 88% reduction in overall hallucination error with a combined fine-tuned detection and filtering system on the self-driving benchmark BDD-100K. Our code and dataset are available at: https://gricad-gitlab.univ-grenoble-alpes.fr/dnn-safety/m-hood.


Safeguarding Large Language Models: A Survey

arXiv.org Artificial Intelligence

In the burgeoning field of Large Language Models (LLMs), developing a robust safety mechanism, colloquially known as "safeguards" or "guardrails", has become imperative to ensure the ethical use of LLMs within prescribed boundaries. This article provides a systematic literature review on the current status of this critical mechanism. It discusses its major challenges and how it can be enhanced into a comprehensive mechanism dealing with ethical issues in various contexts. First, the paper elucidates the current landscape of safeguarding mechanisms that major LLM service providers and the open-source community employ. This is followed by the techniques to evaluate, analyze, and enhance some (un)desirable properties that a guardrail might want to enforce, such as hallucinations, fairness, privacy, and so on. Based on them, we review techniques to circumvent these controls (i.e., attacks), to defend the attacks, and to reinforce the guardrails. While the techniques mentioned above represent the current status and the active research trends, we also discuss several challenges that cannot be easily dealt with by the methods and present our vision on how to implement a comprehensive guardrail through the full consideration of multi-disciplinary approach, neural-symbolic method, and systems development lifecycle.


Formal Specification, Assessment, and Enforcement of Fairness for Generative AIs

arXiv.org Artificial Intelligence

Reinforcing or even exacerbating societal biases and inequalities will increase significantly as generative AI increasingly produces useful artifacts, from text to images and beyond, for the real world. We address these issues by formally characterizing the notion of fairness for generative AI as a basis for monitoring and enforcing fairness. We define two levels of fairness using the notion of infinite sequences of abstractions of AI-generated artifacts such as text or images. The first is the fairness demonstrated on the generated sequences, which is evaluated only on the outputs while agnostic to the prompts and models used. The second is the inherent fairness of the generative AI model, which requires that fairness be manifested when input prompts are neutral, that is, they do not explicitly instruct the generative AI to produce a particular type of output. We also study relative intersectional fairness to counteract the combinatorial explosion of fairness when considering multiple categories together with lazy fairness enforcement. Finally, fairness monitoring and enforcement are tested against some current generative AI models.


A Digital Twin prototype for traffic sign recognition of a learning-enabled autonomous vehicle

arXiv.org Artificial Intelligence

In this paper, we present a novel digital twin prototype for a learning-enabled self-driving vehicle. The primary objective of this digital twin is to perform traffic sign recognition and lane keeping. The digital twin architecture relies on co-simulation and uses the Functional Mock-up Interface and SystemC Transaction Level Modeling standards. The digital twin consists of four clients, i) a vehicle model that is designed in Amesim tool, ii) an environment model developed in Prescan, iii) a lane-keeping controller designed in Robot Operating System, and iv) a perception and speed control module developed in the formal modeling language of BIP (Behavior, Interaction, Priority). These clients interface with the digital twin platform, PAVE360-Veloce System Interconnect (PAVE360-VSI). PAVE360-VSI acts as the co-simulation orchestrator and is responsible for synchronization, interconnection, and data exchange through a server. The server establishes connections among the different clients and also ensures adherence to the Ethernet protocol. We conclude with illustrative digital twin simulations and recommendations for future work.


A Survey of Safety and Trustworthiness of Large Language Models through the Lens of Verification and Validation

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have exploded a new heatwave of AI for their ability to engage end-users in human-level conversations with detailed and articulate answers across many knowledge domains. In response to their fast adoption in many industrial applications, this survey concerns their safety and trustworthiness. First, we review known vulnerabilities and limitations of the LLMs, categorising them into inherent issues, attacks, and unintended bugs. Then, we consider if and how the Verification and Validation (V&V) techniques, which have been widely developed for traditional software and deep learning models such as convolutional neural networks as independent processes to check the alignment of their implementations against the specifications, can be integrated and further extended throughout the lifecycle of the LLMs to provide rigorous analysis to the safety and trustworthiness of LLMs and their applications. Specifically, we consider four complementary techniques: falsification and evaluation, verification, runtime monitoring, and regulations and ethical use. In total, 370+ references are considered to support the quick understanding of the safety and trustworthiness issues from the perspective of V&V. While intensive research has been conducted to identify the safety and trustworthiness issues, rigorous yet practical methods are called for to ensure the alignment of LLMs with safety and trustworthiness requirements.


What, Indeed, is an Achievable Provable Guarantee for Learning-Enabled Safety Critical Systems

arXiv.org Artificial Intelligence

Machine learning has made remarkable advancements, but confidently utilising learning-enabled components in safety-critical domains still poses challenges. Among the challenges, it is known that a rigorous, yet practical, way of achieving safety guarantees is one of the most prominent. In this paper, we first discuss the engineering and research challenges associated with the design and verification of such systems. Then, based on the observation that existing works cannot actually achieve provable guarantees, we promote a two-step verification method for the ultimate achievement of provable statistical guarantees.


Towards Rigorous Design of OoD Detectors

arXiv.org Artificial Intelligence

Out-of-distribution (OoD) detection techniques are instrumental for safety-related neural networks. We are arguing, however, that current performance-oriented OoD detection techniques geared towards matching metrics such as expected calibration error, are not sufficient for establishing safety claims. What is missing is a rigorous design approach for developing, verifying, and validating OoD detectors. These design principles need to be aligned with the intended functionality and the operational domain. Here, we formulate some of the key technical challenges, together with a possible way forward, for developing a rigorous and safety-related design methodology for OoD detectors.


Customizable Reference Runtime Monitoring of Neural Networks using Resolution Boxes

arXiv.org Artificial Intelligence

We present an approach for the runtime verification of classification systems via data abstraction. Data abstraction relies on the notion of box with a resolution. Boxbased abstraction consists in representing a set of values by its minimal and maximal values in each dimension. We augment boxes with a notion of resolution; this allows to define the notion of clustering coverage, which is intuitively a quantitative metric over boxes that indicates the quality of the abstraction. This allows studying the effect of different clustering parameters on the constructed boxes and estimating an interval of sub-optimal parameters. Moreover, we show how to automatically construct monitors that make use of both the correct and incorrect behaviors of a classification system. This allows checking the size of the monitor abstractions and analysing the separability of the network. Monitors are obtained by combining the sub-monitors of each class of the system placed at some selected layers. Our experiments demonstrate the effectiveness of our clustering coverage estimation and show how to assess the effectiveness and precision of monitors according to the selected clustering parameter and the chosen monitored layers.