Goto

Collaborating Authors

 Belinkov, Yonatan


Are formal and functional linguistic mechanisms dissociated in language models?

arXiv.org Artificial Intelligence

Although large language models (LLMs) are increasingly capable, these capabilities are unevenly distributed: they excel at formal linguistic tasks, such as producing fluent, grammatical text, but struggle more with functional linguistic tasks like reasoning and consistent fact retrieval. Inspired by neuroscience, recent work suggests that to succeed on both formal and functional linguistic tasks, LLMs should use different mechanisms for each; such localization could either be built-in or emerge spontaneously through training. In this paper, we ask: do current models, with fast-improving functional linguistic abilities, exhibit distinct localization of formal and functional linguistic mechanisms? We answer this by finding and comparing the "circuits", or minimal computational subgraphs, responsible for various formal and functional tasks. Comparing 5 LLMs across 10 distinct tasks, we find that while there is indeed little overlap between circuits for formal and functional tasks, there is also little overlap between formal linguistic tasks, as exists in the human brain. Thus, a single formal linguistic network, unified and distinct from functional task circuits, remains elusive. However, in terms of cross-task faithfulness - the ability of one circuit to solve another's task - we observe a separation between formal and functional mechanisms, suggesting that shared mechanisms between formal tasks may exist.


Inside-Out: Hidden Factual Knowledge in LLMs

arXiv.org Artificial Intelligence

This work presents a framework for assessing whether large language models (LLMs) encode more factual knowledge in their parameters than what they express in their outputs. While a few studies hint at this possibility, none has clearly defined or demonstrated this phenomenon. We first propose a formal definition of knowledge, quantifying it for a given question as the fraction of correct-incorrect answer pairs where the correct one is ranked higher. This gives rise to external and internal knowledge, depending on the information used to score individual answer candidates: either the model's observable token-level probabilities or its intermediate computations. Hidden knowledge arises when internal knowledge exceeds external knowledge. We then present a case study, applying this framework to three popular open-weights LLMs in a closed-book QA setup. Our results indicate that: (1) LLMs consistently encode more factual knowledge internally than what they express externally, with an average gap of 40%. (2) Surprisingly, some knowledge is so deeply hidden that a model can internally know an answer perfectly, yet fail to generate it even once, despite large-scale repeated sampling of 1,000 answers. This reveals fundamental limitations in the generation capabilities of LLMs, which (3) puts a practical constraint on scaling test-time compute via repeated answer sampling in closed-book QA: significant performance improvements remain inaccessible because some answers are practically never sampled, yet if they were, we would be guaranteed to rank them first.


Measuring Faithfulness of Chains of Thought by Unlearning Reasoning Steps

arXiv.org Artificial Intelligence

When prompted to think step-by-step, language models (LMs) produce a chain of thought (CoT), a sequence of reasoning steps that the model supposedly used to produce its prediction. However, despite much work on CoT prompting, it is unclear if CoT reasoning is faithful to the models' parameteric beliefs. We introduce a framework for measuring parametric faithfulness of generated reasoning, and propose Faithfulness by Unlearning Reasoning steps (FUR), an instance of this framework. FUR erases information contained in reasoning steps from model parameters. We perform experiments unlearning CoTs of four LMs prompted on four multi-choice question answering (MCQA) datasets. Our experiments show that FUR is frequently able to change the underlying models' prediction by unlearning key steps, indicating when a CoT is parametrically faithful. Further analysis shows that CoTs generated by models post-unlearning support different answers, hinting at a deeper effect of unlearning. Importantly, CoT steps identified as important by FUR do not align well with human notions of plausbility, emphasizing the need for specialized alignment


Trust Me, I'm Wrong: High-Certainty Hallucinations in LLMs

arXiv.org Artificial Intelligence

Large Language Models (LLMs) often generate outputs that lack grounding in real-world facts, a phenomenon known as hallucinations. Prior research has associated hallucinations with model uncertainty, leveraging this relationship for hallucination detection and mitigation. In this paper, we challenge the underlying assumption that all hallucinations are associated with uncertainty. Using knowledge detection and uncertainty measurement methods, Figure 1: Do high-certainty hallucinations exist? An we demonstrate that models can hallucinate illustrative categorization of hallucinations based on a with high certainty even when they have the model's knowledge and certainty. Highlighted is the correct knowledge. We further show that highcertainty phenomenon of high-certainty hallucinations (purple) hallucinations are consistent across - where models confidently produce incorrect outputs, models and datasets, distinctive enough to be even when they have the correct knowledge. While other singled out, and challenge existing mitigation types of hallucinations can potentially be explained by methods. Our findings reveal an overlooked aspect the model not knowing, being mistaken, or uncertain, of hallucinations, emphasizing the need to high-certainty hallucinations are harder to rationalize, understand their origins and improve mitigation making their existence particularly intriguing.


Back Attention: Understanding and Enhancing Multi-Hop Reasoning in Large Language Models

arXiv.org Artificial Intelligence

We investigate how large language models perform latent multi-hop reasoning in prompts like "Wolfgang Amadeus Mozart's mother's spouse is". To analyze this process, we introduce logit flow, an interpretability method that traces how logits propagate across layers and positions toward the final prediction. Using logit flow, we identify four distinct stages in single-hop knowledge prediction: (A) entity subject enrichment, (B) entity attribute extraction, (C) relation subject enrichment, and (D) relation attribute extraction. Extending this analysis to multi-hop reasoning, we find that failures often stem from the relation attribute extraction stage, where conflicting logits reduce prediction accuracy. To address this, we propose back attention, a novel mechanism that enables lower layers to leverage higher-layer hidden states from different positions during attention computation. With back attention, a 1-layer transformer achieves the performance of a 2-layer transformer. Applied to four LLMs, back attention improves accuracy on five reasoning datasets, demonstrating its effectiveness in enhancing latent multi-hop reasoning ability.


Unsupervised Translation of Emergent Communication

arXiv.org Artificial Intelligence

Emergent Communication (EC) provides a unique window into the language systems that emerge autonomously when agents are trained to jointly achieve shared goals. However, it is difficult to interpret EC and evaluate its relationship with natural languages (NL). This study employs unsupervised neural machine translation (UNMT) techniques to decipher ECs formed during referential games with varying task complexities, influenced by the semantic diversity of the environment. Our findings demonstrate UNMT's potential to translate EC, illustrating that task complexity characterized by semantic diversity enhances EC translatability, while higher task complexity with constrained semantic variability exhibits pragmatic EC, which, although challenging to interpret, remains suitable for translation. This research marks the first attempt, to our knowledge, to translate EC without the aid of parallel data.


Position-aware Automatic Circuit Discovery

arXiv.org Artificial Intelligence

A widely used strategy to discover and understand language model mechanisms is circuit analysis. A circuit is a minimal subgraph of a model's computation graph that executes a specific task. We identify a gap in existing circuit discovery methods: they assume circuits are position-invariant, treating model components as equally relevant across input positions. This limits their ability to capture cross-positional interactions or mechanisms that vary across positions. To address this gap, we propose two improvements to incorporate positionality into circuits, even on tasks containing variable-length examples. First, we extend edge attribution patching, a gradient-based method for circuit discovery, to differentiate between token positions. Second, we introduce the concept of a dataset schema, which defines token spans with similar semantics across examples, enabling position-aware circuit discovery in datasets with variable length examples. We additionally develop an automated pipeline for schema generation and application using large language models. Our approach enables fully automated discovery of position-sensitive circuits, yielding better trade-offs between circuit size and faithfulness compared to prior work.


Padding Tone: A Mechanistic Analysis of Padding Tokens in T2I Models

arXiv.org Artificial Intelligence

Text-to-image (T2I) diffusion models rely on encoded prompts to guide the image generation process. Typically, these prompts are extended to a fixed length by adding padding tokens before text encoding. Despite being a default practice, the influence of padding tokens on the image generation process has not been investigated. In this work, we conduct the first in-depth analysis of the role padding tokens play in T2I models. We develop two causal techniques to analyze how information is encoded in the representation of tokens across different components of the T2I pipeline. Using these techniques, we investigate when and how padding tokens impact the image generation process. Our findings reveal three distinct scenarios: padding tokens may affect the model's output during text encoding, during the diffusion process, or be effectively ignored. Moreover, we identify key relationships between these scenarios and the model's architecture (cross or self-attention) and its training process (frozen or trained text encoder). These insights contribute to a deeper understanding of the mechanisms of padding tokens, potentially informing future model design and training practices in T2I systems.


Semantics and Spatiality of Emergent Communication

arXiv.org Artificial Intelligence

When artificial agents are jointly trained to perform collaborative tasks using a communication channel, they develop opaque goal-oriented communication protocols. Good task performance is often considered sufficient evidence that meaningful communication is taking place, but existing empirical results show that communication strategies induced by common objectives can be counterintuitive whilst solving the task nearly perfectly. In this work, we identify a goal-agnostic prerequisite to meaningful communication, which we term semantic consistency, based on the idea that messages should have similar meanings across instances. We provide a formal definition for this idea, and use it to compare the two most common objectives in the field of emergent communication: discrimination and reconstruction. We prove, under mild assumptions, that semantically inconsistent communication protocols can be optimal solutions to the discrimination task, but not to reconstruction. We further show that the reconstruction objective encourages a stricter property, spatial meaningfulness, which also accounts for the distance between messages. Experiments with emergent communication games validate our theoretical results. These findings demonstrate an inherent advantage of distance-based communication goals, and contextualize previous empirical discoveries.


Growing a Tail: Increasing Output Diversity in Large Language Models

arXiv.org Artificial Intelligence

For large groups, use the name of the group or consortium and include a full list of the authors and affiliations at the end of the main manuscript or in the Supplementary Materials. Abstract: How diverse are the outputs of large language models when diversity is desired? We examine the diversity of responses of various models to questions with multiple possible answers, comparing them with human responses. Our findings suggest that models' outputs are highly concentrated, reflecting a narrow, mainstream'worldview', in comparison to humans, whose responses exhibit a much longer-tail. We examine three ways to increase models' output diversity: 1) increasing generation randomness via temperature sampling; 2) prompting models to answer from diverse perspectives; 3) aggregating outputs from several models. A combination of these measures significantly increases models' output diversity, reaching that of humans. We discuss implications of these findings for AI policy that wishes to preserve cultural diversity, an essential building block of a democratic social fabric. Conversely, a lack of diversity can result in extremism and exclusion (e.g., 1, 2).