Goto

Collaborating Authors

 Bambos, Nicholas


Finite-Time Bounds for Two-Time-Scale Stochastic Approximation with Arbitrary Norm Contractions and Markovian Noise

arXiv.org Machine Learning

Two-time-scale Stochastic Approximation (SA) is an iterative algorithm with applications in reinforcement learning and optimization. Prior finite time analysis of such algorithms has focused on fixed point iterations with mappings contractive under Euclidean norm. Motivated by applications in reinforcement learning, we give the first mean square bound on non linear two-time-scale SA where the iterations have arbitrary norm contractive mappings and Markovian noise. We show that the mean square error decays at a rate of $O(1/n^{2/3})$ in the general case, and at a rate of $O(1/n)$ in a special case where the slower timescale is noiseless. Our analysis uses the generalized Moreau envelope to handle the arbitrary norm contractions and solutions of Poisson equation to deal with the Markovian noise. By analyzing the SSP Q-Learning algorithm, we give the first $O(1/n)$ bound for an algorithm for asynchronous control of MDPs under the average reward criterion. We also obtain a rate of $O(1/n)$ for Q-Learning with Polyak-averaging and provide an algorithm for learning Generalized Nash Equilibrium (GNE) for strongly monotone games which converges at a rate of $O(1/n^{2/3})$.


Accelerated regularized learning in finite N-person games

arXiv.org Artificial Intelligence

Motivated by the success of Nesterov's accelerated gradient algorithm for convex minimization problems, we examine whether it is possible to achieve similar performance gains in the context of online learning in games. To that end, we introduce a family of accelerated learning methods, which we call "follow the accelerated leader" (FTXL), and which incorporates the use of momentum within the general framework of regularized learning - and, in particular, the exponential / multiplicative weights algorithm and its variants. Drawing inspiration and techniques from the continuous-time analysis of Nesterov's algorithm, we show that FTXL converges locally to strict Nash equilibria at a superlinear rate, achieving in this way an exponential speed-up over vanilla regularized learning methods (which, by comparison, converge to strict equilibria at a geometric, linear rate). Importantly, FTXL maintains its superlinear convergence rate in a broad range of feedback structures, from deterministic, full information models to stochastic, realization-based ones, and even when run with bandit, payoff-based information, where players are only able to observe their individual realized payoffs.


Learning to Control Unknown Strongly Monotone Games

arXiv.org Artificial Intelligence

Consider $N$ players each with a $d$-dimensional action set. Each of the players' utility functions includes their reward function and a linear term for each dimension, with coefficients that are controlled by the manager. We assume that the game is strongly monotone, so if each player runs gradient descent, the dynamics converge to a unique Nash equilibrium (NE). The NE is typically inefficient in terms of global performance. The resulting global performance of the system can be improved by imposing $K$-dimensional linear constraints on the NE. We therefore want the manager to pick the controlled coefficients that impose the desired constraint on the NE. However, this requires knowing the players' reward functions and their action sets. Obtaining this game structure information is infeasible in a large-scale network and violates the users' privacy. To overcome this, we propose a simple algorithm that learns to shift the NE of the game to meet the linear constraints by adjusting the controlled coefficients online. Our algorithm only requires the linear constraints violation as feedback and does not need to know the reward functions or the action sets. We prove that our algorithm, which is based on two time-scale stochastic approximation, guarantees convergence with probability 1 to the set of NE that meet target linear constraints. We then provide a mean square convergence rate of $O(t^{-1/4})$ for our algorithm. This is the first such bound for two time-scale stochastic approximation where the slower time-scale is a fixed point iteration with a non-expansive mapping. We demonstrate how our scheme can be applied to optimizing a global quadratic cost at NE and load balancing in resource allocation games. We provide simulations of our algorithm for these scenarios.


Payoff-based learning with matrix multiplicative weights in quantum games

arXiv.org Artificial Intelligence

In this paper, we study the problem of learning in quantum games - and other classes of semidefinite games - with scalar, payoff-based feedback. For concreteness, we focus on the widely used matrix multiplicative weights (MMW) algorithm and, instead of requiring players to have full knowledge of the game (and/or each other's chosen states), we introduce a suite of minimal-information matrix multiplicative weights (3MW) methods tailored to different information frameworks. The main difficulty to attaining convergence in this setting is that, in contrast to classical finite games, quantum games have an infinite continuum of pure states (the quantum equivalent of pure strategies), so standard importance-weighting techniques for estimating payoff vectors cannot be employed. Instead, we borrow ideas from bandit convex optimization and we design a zeroth-order gradient sampler adapted to the semidefinite geometry of the problem at hand. As a first result, we show that the 3MW method with deterministic payoff feedback retains the $\mathcal{O}(1/\sqrt{T})$ convergence rate of the vanilla, full information MMW algorithm in quantum min-max games, even though the players only observe a single scalar. Subsequently, we relax the algorithm's information requirements even further and we provide a 3MW method that only requires players to observe a random realization of their payoff observable, and converges to equilibrium at an $\mathcal{O}(T^{-1/4})$ rate. Finally, going beyond zero-sum games, we show that a regularized variant of the proposed 3MW method guarantees local convergence with high probability to all equilibria that satisfy a certain first-order stability condition.


Equilibrium Bandits: Learning Optimal Equilibria of Unknown Dynamics

arXiv.org Artificial Intelligence

Consider a decision-maker that can pick one out of $K$ actions to control an unknown system, for $T$ turns. The actions are interpreted as different configurations or policies. Holding the same action fixed, the system asymptotically converges to a unique equilibrium, as a function of this action. The dynamics of the system are unknown to the decision-maker, which can only observe a noisy reward at the end of every turn. The decision-maker wants to maximize its accumulated reward over the $T$ turns. Learning what equilibria are better results in higher rewards, but waiting for the system to converge to equilibrium costs valuable time. Existing bandit algorithms, either stochastic or adversarial, achieve linear (trivial) regret for this problem. We present a novel algorithm, termed Upper Equilibrium Concentration Bound (UECB), that knows to switch an action quickly if it is not worth it to wait until the equilibrium is reached. This is enabled by employing convergence bounds to determine how far the system is from equilibrium. We prove that UECB achieves a regret of $\mathcal{O}(\log(T)+\tau_c\log(\tau_c)+\tau_c\log\log(T))$ for this equilibrium bandit problem where $\tau_c$ is the worst case approximate convergence time to equilibrium. We then show that both epidemic control and game control are special cases of equilibrium bandits, where $\tau_c\log \tau_c$ typically dominates the regret. We then test UECB numerically for both of these applications.


Learning in quantum games

arXiv.org Artificial Intelligence

In this paper, we introduce a class of learning dynamics for general quantum games, that we call "follow the quantum regularized leader" (FTQL), in reference to the classical "follow the regularized leader" (FTRL) template for learning in finite games. We show that the induced quantum state dynamics decompose into (i) a classical, commutative component which governs the dynamics of the system's eigenvalues in a way analogous to the evolution of mixed strategies under FTRL; and (ii) a non-commutative component for the system's eigenvectors which has no classical counterpart. Despite the complications that this non-classical component entails, we find that the FTQL dynamics incur no more than constant regret in all quantum games. Moreover, adjusting classical notions of stability to account for the nonlinear geometry of the state space of quantum games, we show that only pure quantum equilibria can be stable and attracting under FTQL while, as a partial converse, pure equilibria that satisfy a certain "variational stability" condition are always attracting. Finally, we show that the FTQL dynamics are Poincar\'e recurrent in quantum min-max games, extending in this way a very recent result for the quantum replicator dynamics.


Countering Feedback Delays in Multi-Agent Learning

Neural Information Processing Systems

We consider a model of game-theoretic learning based on online mirror descent (OMD) with asynchronous and delayed feedback information. Instead of focusing on specific games, we consider a broad class of continuous games defined by the general equilibrium stability notion, which we call λ-variational stability. Our first contribution is that, in this class of games, the actual sequence of play induced by OMD-based learning converges to Nash equilibria provided that the feedback delays faced by the players are synchronous and bounded. Subsequently, to tackle fully decentralized, asynchronous environments with (possibly) unbounded delays between actions and feedback, we propose a variant of OMD which we call delayed mirror descent (DMD), and which relies on the repeated leveraging of past information. With this modification, the algorithm converges to Nash equilibria with no feedback synchronicity assumptions and even when the delays grow superlinearly relative to the horizon of play.


Learning in Games with Lossy Feedback

Neural Information Processing Systems

We consider a game-theoretical multi-agent learning problem where the feedback information can be lost during the learning process and rewards are given by a broad class of games known as variationally stable games. We propose a simple variant of the classical online gradient descent algorithm, called reweighted online gradient descent (ROGD) and show that in variationally stable games, if each agent adopts ROGD, then almost sure convergence to the set of Nash equilibria is guaranteed, even when the feedback loss is asynchronous and arbitrarily corrrelated among agents. We then extend the framework to deal with unknown feedback loss probabilities by using an estimator (constructed from past data) in its replacement. Finally, we further extend the framework to accomodate both asynchronous loss and stochastic rewards and establish that multi-agent ROGD learning still converges to the set of Nash equilibria in such settings. Together, these results contribute to the broad lanscape of multi-agent online learning by significantly relaxing the feedback information that is required to achieve desirable outcomes.


Learning in Games with Lossy Feedback

Neural Information Processing Systems

We consider a game-theoretical multi-agent learning problem where the feedback information can be lost during the learning process and rewards are given by a broad class of games known as variationally stable games. We propose a simple variant of the classical online gradient descent algorithm, called reweighted online gradient descent (ROGD) and show that in variationally stable games, if each agent adopts ROGD, then almost sure convergence to the set of Nash equilibria is guaranteed, even when the feedback loss is asynchronous and arbitrarily corrrelated among agents. We then extend the framework to deal with unknown feedback loss probabilities by using an estimator (constructed from past data) in its replacement. Finally, we further extend the framework to accomodate both asynchronous loss and stochastic rewards and establish that multi-agent ROGD learning still converges to the set of Nash equilibria in such settings. Together, these results contribute to the broad lanscape of multi-agent online learning by significantly relaxing the feedback information that is required to achieve desirable outcomes.


Stochastic Mirror Descent in Variationally Coherent Optimization Problems

Neural Information Processing Systems

In this paper, we examine a class of non-convex stochastic optimization problems which we call variationally coherent, and which properly includes pseudo-/quasiconvex and star-convex optimization problems. To solve such problems, we focus on the widely used stochastic mirror descent (SMD) family of algorithms (which contains stochastic gradient descent as a special case), and we show that the last iterate of SMD converges to the problem’s solution set with probability 1. This result contributes to the landscape of non-convex stochastic optimization by clarifying that neither pseudo-/quasi-convexity nor star-convexity is essential for (almost sure) global convergence; rather, variational coherence, a much weaker requirement, suffices. Characterization of convergence rates for the subclass of strongly variationally coherent optimization problems as well as simulation results are also presented.