Plotting

 Balakrishnan, Ravikumar


Enhancing O-RAN Security: Evasion Attacks and Robust Defenses for Graph Reinforcement Learning-based Connection Management

arXiv.org Artificial Intelligence

Adversarial machine learning, focused on studying various attacks and defenses on machine learning (ML) models, is rapidly gaining importance as ML is increasingly being adopted for optimizing wireless systems such as Open Radio Access Networks (O-RAN). A comprehensive modeling of the security threats and the demonstration of adversarial attacks and defenses on practical AI based O-RAN systems is still in its nascent stages. We begin by conducting threat modeling to pinpoint attack surfaces in O-RAN using an ML-based Connection management application (xApp) as an example. The xApp uses a Graph Neural Network trained using Deep Reinforcement Learning and achieves on average 54% improvement in the coverage rate measured as the 5th percentile user data rates. We then formulate and demonstrate evasion attacks that degrade the coverage rates by as much as 50% through injecting bounded noise at different threat surfaces including the open wireless medium itself. Crucially, we also compare and contrast the effectiveness of such attacks on the ML-based xApp and a non-ML based heuristic. We finally develop and demonstrate robust training-based defenses against the challenging physical/jamming-based attacks and show a 15% improvement in the coverage rates when compared to employing no defense over a range of noise budgets


Multi-Task Model Personalization for Federated Supervised SVM in Heterogeneous Networks

arXiv.org Artificial Intelligence

Federated systems enable collaborative training on highly heterogeneous data through model personalization, which can be facilitated by employing multi-task learning algorithms. However, significant variation in device computing capabilities may result in substantial degradation in the convergence rate of training. To accelerate the learning procedure for diverse participants in a multi-task federated setting, more efficient and robust methods need to be developed. In this paper, we design an efficient iterative distributed method based on the alternating direction method of multipliers (ADMM) for support vector machines (SVMs), which tackles federated classification and regression. The proposed method utilizes efficient computations and model exchange in a network of heterogeneous nodes and allows personalization of the learning model in the presence of non-i.i.d. data. To further enhance privacy, we introduce a random mask procedure that helps avoid data inversion. Finally, we analyze the impact of the proposed privacy mechanisms and participant hardware and data heterogeneity on the system performance.


Sim-to-Real Transfer in Multi-agent Reinforcement Networking for Federated Edge Computing

arXiv.org Artificial Intelligence

Federated Learning (FL) over wireless multi-hop edge computing networks, i.e., multi-hop FL, is a cost-effective distributed on-device deep learning paradigm. This paper presents FedEdge simulator, a high-fidelity Linux-based simulator, which enables fast prototyping, sim-to-real code, and knowledge transfer for multi-hop FL systems. FedEdge simulator is built on top of the hardware-oriented FedEdge experimental framework with a new extension of the realistic physical layer emulator. This emulator exploits trace-based channel modeling and dynamic link scheduling to minimize the reality gap between the simulator and the physical testbed. Our initial experiments demonstrate the high fidelity of the FedEdge simulator and its superior performance on sim-to-real knowledge transfer in reinforcement learning-optimized multi-hop FL.