Bae, Sangmin
MoHAVE: Mixture of Hierarchical Audio-Visual Experts for Robust Speech Recognition
Kim, Sungnyun, Jang, Kangwook, Bae, Sangmin, Cho, Sungwoo, Yun, Se-Young
Audio-visual speech recognition (AVSR) has become critical for enhancing speech recognition in noisy environments by integrating both auditory and visual modalities. However, existing AVSR systems struggle to scale up without compromising computational efficiency. In this study, we introduce MoHAVE (Mixture of Hierarchical Audio-Visual Experts), a novel robust AVSR framework designed to address these scalability constraints. By leveraging a Mixture-of-Experts (MoE) architecture, MoHAVE activates modality-specific expert groups, ensuring dynamic adaptation to various audio-visual inputs with minimal computational overhead. Key contributions of MoHAVE include: (1) a sparse MoE framework that efficiently scales AVSR model capacity, (2) a hierarchical gating mechanism that dynamically utilizes the expert groups based on input context, enhancing adaptability and robustness, and (3) remarkable performance across robust AVSR benchmarks, including LRS3 and MuAViC transcription and translation tasks, setting a new standard for scalable speech recognition systems.
Relaxed Recursive Transformers: Effective Parameter Sharing with Layer-wise LoRA
Bae, Sangmin, Fisch, Adam, Harutyunyan, Hrayr, Ji, Ziwei, Kim, Seungyeon, Schuster, Tal
Large language models (LLMs) are expensive to deploy. Parameter sharing offers a possible path towards reducing their size and cost, but its effectiveness in modern LLMs remains fairly limited. In this work, we revisit "layer tying" as form of parameter sharing in Transformers, and introduce novel methods for converting existing LLMs into smaller "Recursive Transformers" that share parameters across layers, with minimal loss of performance. Here, our Recursive Transformers are efficiently initialized from standard pretrained Transformers, but only use a single block of unique layers that is then repeated multiple times in a loop. We further improve performance by introducing Relaxed Recursive Transformers that add flexibility to the layer tying constraint via depth-wise low-rank adaptation (LoRA) modules, yet still preserve the compactness of the overall model. We show that our recursive models (e.g., recursive Gemma 1B) outperform both similar-sized vanilla pretrained models (such as TinyLlama 1.1B and Pythia 1B) and knowledge distillation baselines -- and can even recover most of the performance of the original "full-size" model (e.g., Gemma 2B with no shared parameters). Finally, we propose Continuous Depth-wise Batching, a promising new inference paradigm enabled by the Recursive Transformer when paired with early exiting. In a theoretical analysis, we show that this has the potential to lead to significant (2-3x) gains in inference throughput.
Automated Filtering of Human Feedback Data for Aligning Text-to-Image Diffusion Models
Yang, Yongjin, Kim, Sihyeon, Jung, Hojung, Bae, Sangmin, Kim, SangMook, Yun, Se-Young, Lee, Kimin
Fine-tuning text-to-image diffusion models with human feedback is an effective method for aligning model behavior with human intentions. However, this alignment process often suffers from slow convergence due to the large size and noise present in human feedback datasets. In this work, we propose FiFA, a novel automated data filtering algorithm designed to enhance the fine-tuning of diffusion models using human feedback datasets with direct preference optimization (DPO). Specifically, our approach selects data by solving an optimization problem to maximize three components: preference margin, text quality, and text diversity. The concept of preference margin is used to identify samples that contain high informational value to address the noisy nature of feedback dataset, which is calculated using a proxy reward model. Additionally, we incorporate text quality, assessed by large language models to prevent harmful contents, and consider text diversity through a k-nearest neighbor entropy estimator to improve generalization. Finally, we integrate all these components into an optimization process, with approximating the solution by assigning importance score to each data pair and selecting the most important ones. As a result, our method efficiently filters data automatically, without the need for manual intervention, and can be applied to any large-scale dataset. Experimental results show that FiFA significantly enhances training stability and achieves better performance, being preferred by humans 17% more, while using less than 0.5% of the full data and thus 1% of the GPU hours compared to utilizing full human feedback datasets. Warning: This paper contains offensive contents that may be upsetting. Large-scale models trained on extensive web-scale datasets using diffusion techniques (Ho et al., 2020; Song et al., 2020), such as Stable Diffusion (Rombach et al., 2022), Dall-E (Ramesh et al., 2022), and Imagen (Saharia et al., 2022), have enabled the generation of high-fidelity images from diverse text prompts. However, several failure cases remain, such as difficulties in illustrating text content, incorrect counting, or insufficient aesthetics for certain text prompts (Lee et al., 2023; Fan et al., 2024; Black et al., 2023). Fine-tuning text-to-image diffusion models using human feedback has recently emerged as a powerful approach to address this issue (Black et al., 2023; Fan et al., 2024; Prabhudesai et al., 2023; Clark et al., 2023). Unlike the conventional optimization strategy of likelihood maximization, this framework first trains reward models using human feedback (Kirstain et al., 2024; Wu et al., 2023; Xu et al., 2024) and then fine-tunes the diffusion models to maximize reward scores through policy gradient (Fan et al., 2024; Black et al., 2023) or reward-gradient based techniques (Prabhudesai et al., 2023; Clark et al., 2023).
Learning Video Temporal Dynamics with Cross-Modal Attention for Robust Audio-Visual Speech Recognition
Kim, Sungnyun, Jang, Kangwook, Bae, Sangmin, Kim, Hoirin, Yun, Se-Young
Audio-visual speech recognition (AVSR) aims to transcribe human speech using both audio and video modalities. In practical environments with noise-corrupted audio, the role of video information becomes crucial. However, prior works have primarily focused on enhancing audio features in AVSR, overlooking the importance of video features. In this study, we strengthen the video features by learning three temporal dynamics in video data: context order, playback direction, and the speed of video frames. Cross-modal attention modules are introduced to enrich video features with audio information so that speech variability can be taken into account when training on the video temporal dynamics. Based on our approach, we achieve the state-of-the-art performance on the LRS2 and LRS3 AVSR benchmarks for the noise-dominant settings. Our approach excels in scenarios especially for babble and speech noise, indicating the ability to distinguish the speech signal that should be recognized from lip movements in the video modality. We support the validity of our methodology by offering the ablation experiments for the temporal dynamics losses and the cross-modal attention architecture design.
Block Transformer: Global-to-Local Language Modeling for Fast Inference
Ho, Namgyu, Bae, Sangmin, Kim, Taehyeon, Jo, Hyunjik, Kim, Yireun, Schuster, Tal, Fisch, Adam, Thorne, James, Yun, Se-Young
This paper presents the Block Transformer architecture which adopts hierarchical global-to-local modeling to autoregressive transformers to mitigate the inference bottlenecks of self-attention. To apply self-attention, the key-value (KV) cache of all previous sequences must be retrieved from memory at every decoding step. Thereby, this KV cache IO becomes a significant bottleneck in batch inference. We notice that these costs stem from applying self-attention on the global context, therefore we isolate the expensive bottlenecks of global modeling to lower layers and apply fast local modeling in upper layers. To mitigate the remaining costs in the lower layers, we aggregate input tokens into fixed size blocks and then apply self-attention at this coarse level. Context information is aggregated into a single embedding to enable upper layers to decode the next block of tokens, without global attention. Free of global attention bottlenecks, the upper layers can fully utilize the compute hardware to maximize inference throughput. By leveraging global and local modules, the Block Transformer architecture demonstrates 10-20x gains in inference throughput compared to vanilla transformers with equivalent perplexity. Our work introduces a new approach to optimize language model inference through novel application of global-to-local modeling.
Why In-Context Learning Transformers are Tabular Data Classifiers
Breejen, Felix den, Bae, Sangmin, Cha, Stephen, Yun, Se-Young
The recently introduced TabPFN pretrains an In-Context Learning (ICL) transformer on synthetic data to perform tabular data classification. As synthetic data does not share features or labels with real-world data, the underlying mechanism that contributes to the success of this method remains unclear. This study provides an explanation by demonstrating that ICL-transformers acquire the ability to create complex decision boundaries during pretraining. To validate our claim, we develop a novel forest dataset generator which creates datasets that are unrealistic, but have complex decision boundaries. Our experiments confirm the effectiveness of ICL-transformers pretrained on this data. Furthermore, we create TabForestPFN, the ICL-transformer pretrained on both the original TabPFN synthetic dataset generator and our forest dataset generator. By fine-tuning this model, we reach the current state-of-the-art on tabular data classification.
RepAugment: Input-Agnostic Representation-Level Augmentation for Respiratory Sound Classification
Kim, June-Woo, Toikkanen, Miika, Bae, Sangmin, Kim, Minseok, Jung, Ho-Young
Recent advancements in AI have democratized its deployment as a healthcare assistant. While pretrained models from large-scale visual and audio datasets have demonstrably generalized to this task, surprisingly, no studies have explored pretrained speech models, which, as human-originated sounds, intuitively would share closer resemblance to lung sounds. This paper explores the efficacy of pretrained speech models for respiratory sound classification. We find that there is a characterization gap between speech and lung sound samples, and to bridge this gap, data augmentation is essential. However, the most widely used augmentation technique for audio and speech, SpecAugment, requires 2-dimensional spectrogram format and cannot be applied to models pretrained on speech waveforms. To address this, we propose RepAugment, an input-agnostic representation-level augmentation technique that outperforms SpecAugment, but is also suitable for respiratory sound classification with waveform pretrained models. Experimental results show that our approach outperforms the SpecAugment, demonstrating a substantial improvement in the accuracy of minority disease classes, reaching up to 7.14%.
Carpe Diem: On the Evaluation of World Knowledge in Lifelong Language Models
Kim, Yujin, Yoon, Jaehong, Ye, Seonghyeon, Bae, Sangmin, Ho, Namgyu, Hwang, Sung Ju, Yun, Se-young
The dynamic nature of knowledge in an ever-changing world presents challenges for language models trained on static data; the model in the real world often requires not only acquiring new knowledge but also overwriting outdated information into updated ones. To study the ability of language models for these time-dependent dynamics in human language, we introduce a novel task, EvolvingQA, a temporally evolving question-answering benchmark designed for training and evaluating LMs on an evolving Wikipedia database. The construction of EvolvingQA is automated with our pipeline using large language models. We uncover that existing continual learning baselines suffer from updating and removing outdated knowledge. Our analysis suggests that models fail to rectify knowledge due to small weight gradients. In addition, we elucidate that language models particularly struggle to reflect the change of numerical or temporal information. Our work aims to model the dynamic nature of real-world information, suggesting faithful evaluations of the evolution-adaptability of language models.
Stethoscope-guided Supervised Contrastive Learning for Cross-domain Adaptation on Respiratory Sound Classification
Kim, June-Woo, Bae, Sangmin, Cho, Won-Yang, Lee, Byungjo, Jung, Ho-Young
Despite the remarkable advances in deep learning technology, achieving satisfactory performance in lung sound classification remains a challenge due to the scarcity of available data. Moreover, the respiratory sound samples are collected from a variety of electronic stethoscopes, which could potentially introduce biases into the trained models. When a significant distribution shift occurs within the test dataset or in a practical scenario, it can substantially decrease the performance. To tackle this issue, we introduce cross-domain adaptation techniques, which transfer the knowledge from a source domain to a distinct target domain. In particular, by considering different stethoscope types as individual domains, we propose a novel stethoscope-guided supervised contrastive learning approach. This method can mitigate any domain-related disparities and thus enables the model to distinguish respiratory sounds of the recording variation of the stethoscope. The experimental results on the ICBHI dataset demonstrate that the proposed methods are effective in reducing the domain dependency and achieving the ICBHI Score of 61.71%, which is a significant improvement of 2.16% over the baseline.
Patch-Mix Contrastive Learning with Audio Spectrogram Transformer on Respiratory Sound Classification
Bae, Sangmin, Kim, June-Woo, Cho, Won-Yang, Baek, Hyerim, Son, Soyoun, Lee, Byungjo, Ha, Changwan, Tae, Kyongpil, Kim, Sungnyun, Yun, Se-Young
Respiratory sound contains crucial information for the early diagnosis of fatal lung diseases. Since the COVID-19 pandemic, there has been a growing interest in contact-free medical care based on electronic stethoscopes. To this end, cutting-edge deep learning models have been developed to diagnose lung diseases; however, it is still challenging due to the scarcity of medical data. In this study, we demonstrate that the pretrained model on large-scale visual and audio datasets can be generalized to the respiratory sound classification task. In addition, we introduce a straightforward Patch-Mix augmentation, which randomly mixes patches between different samples, with Audio Spectrogram Transformer (AST). We further propose a novel and effective Patch-Mix Contrastive Learning to distinguish the mixed representations in the latent space. Our method achieves state-of-the-art performance on the ICBHI dataset, outperforming the prior leading score by an improvement of 4.08%.