Goto

Collaborating Authors

 Béthune, Louis


Sample and Map from a Single Convex Potential: Generation using Conjugate Moment Measures

arXiv.org Machine Learning

A common approach to generative modeling is to split model-fitting into two blocks: define first how to sample noise (e.g. Gaussian) and choose next what to do with it (e.g. using a single map or flows). We explore in this work an alternative route that ties sampling and mapping. We find inspiration in moment measures, a result that states that for any measure $\rho$ supported on a compact convex set of $\mathbb{R}^d$, there exists a unique convex potential $u$ such that $\rho=\nabla u\,\sharp\,e^{-u}$. While this does seem to tie effectively sampling (from log-concave distribution $e^{-u}$) and action (pushing particles through $\nabla u$), we observe on simple examples (e.g., Gaussians or 1D distributions) that this choice is ill-suited for practical tasks. We study an alternative factorization, where $\rho$ is factorized as $\nabla w^*\,\sharp\,e^{-w}$, where $w^*$ is the convex conjugate of $w$. We call this approach conjugate moment measures, and show far more intuitive results on these examples. Because $\nabla w^*$ is the Monge map between the log-concave distribution $e^{-w}$ and $\rho$, we rely on optimal transport solvers to propose an algorithm to recover $w$ from samples of $\rho$, and parameterize $w$ as an input-convex neural network.


Multimodal Autoregressive Pre-training of Large Vision Encoders

arXiv.org Artificial Intelligence

We introduce a novel method for pre-training of large-scale vision encoders. Building on recent advancements in autoregressive pre-training of vision models, we extend this framework to a multimodal setting, i.e., images and text. In this paper, we present AIMV2, a family of generalist vision encoders characterized by a straightforward pre-training process, scalability, and remarkable performance across a range of downstream tasks. This is achieved by pairing the vision encoder with a multimodal decoder that autoregressively generates raw image patches and text tokens. Our encoders excel not only in multimodal evaluations but also in vision benchmarks such as localization, grounding, and classification. Notably, our AIMV2-3B encoder achieves 89.5% accuracy on ImageNet-1k with a frozen trunk. Furthermore, AIMV2 consistently outperforms state-of-the-art contrastive models (e.g., CLIP, SigLIP) in multimodal image understanding across diverse settings.


Sparse Repellency for Shielded Generation in Text-to-image Diffusion Models

arXiv.org Machine Learning

The increased adoption of diffusion models in text-to-image generation has triggered concerns on their reliability. Such models are now closely scrutinized under the lens of various metrics, notably calibration, fairness, or compute efficiency. We focus in this work on two issues that arise when deploying these models: a lack of diversity when prompting images, and a tendency to recreate images from the training set. To solve both problems, we propose a method that coaxes the sampled trajectories of pretrained diffusion models to land on images that fall outside of a reference set. We achieve this by adding repellency terms to the diffusion SDE throughout the generation trajectory, which are triggered whenever the path is expected to land too closely to an image in the shielded reference set. Our method is sparse in the sense that these repellency terms are zero and inactive most of the time, and even more so towards the end of the generation trajectory. Our method, named SPELL for sparse repellency, can be used either with a static reference set that contains protected images, or dynamically, by updating the set at each timestep with the expected images concurrently generated within a batch. We show that adding SPELL to popular diffusion models improves their diversity while impacting their FID only marginally, and performs comparatively better than other recent training-free diversity methods. We also demonstrate how SPELL can ensure a shielded generation away from a very large set of protected images by considering all 1.2M images from ImageNet as the protected set. Diffusion models (Song et al., 2021; Ho et al., 2020) are by now widely used for engineering and scientific tasks, to generate realistic signals (Esser et al., 2024) or structured data (Jo et al., 2022; Chamberlain et al., 2021). Diffusion models build upon a strong theoretical foundation used to guide parameter tuning (Kingma & Gao, 2023) and network architectures (Rombach et al., 2022), and are widely adopted thanks to cutting-edge open-source implementations. As these models gain applicability to a wide range of problems, their deployment reveals important challenges.


Graph-Based Captioning: Enhancing Visual Descriptions by Interconnecting Region Captions

arXiv.org Artificial Intelligence

Humans describe complex scenes with compositionality, using simple text descriptions enriched with links and relationships. While vision-language research has aimed to develop models with compositional understanding capabilities, this is not reflected yet in existing datasets which, for the most part, still use plain text to describe images. In this work, we propose a new annotation strategy, graph-based captioning (GBC) that describes an image using a labelled graph structure, with nodes of various types. The nodes in GBC are created using, in a first stage, object detection and dense captioning tools nested recursively to uncover and describe entity nodes, further linked together in a second stage by highlighting, using new types of nodes, compositions and relations among entities. Since all GBC nodes hold plain text descriptions, GBC retains the flexibility found in natural language, but can also encode hierarchical information in its edges. We demonstrate that GBC can be produced automatically, using off-the-shelf multimodal LLMs and open-vocabulary detection models, by building a new dataset, GBC10M, gathering GBC annotations for about 10M images of the CC12M dataset. We use GBC10M to showcase the wealth of node captions uncovered by GBC, as measured with CLIP training. We show that using GBC nodes' annotations -- notably those stored in composition and relation nodes -- results in significant performance boost on downstream models when compared to other dataset formats. To further explore the opportunities provided by GBC, we also propose a new attention mechanism that can leverage the entire GBC graph, with encouraging experimental results that show the extra benefits of incorporating the graph structure. Our datasets are released at \url{https://huggingface.co/graph-based-captions}.


TaCo: Targeted Concept Removal in Output Embeddings for NLP via Information Theory and Explainability

arXiv.org Machine Learning

The fairness of Natural Language Processing (NLP) models has emerged as a crucial concern. Information theory indicates that to achieve fairness, a model should not be able to predict sensitive variables, such as gender, ethnicity, and age. However, information related to these variables often appears implicitly in language, posing a challenge in identifying and mitigating biases effectively. To tackle this issue, we present a novel approach that operates at the embedding level of an NLP model, independent of the specific architecture. Our method leverages insights from recent advances in XAI techniques and employs an embedding transformation to eliminate implicit information from a selected variable. By directly manipulating the embeddings in the final layer, our approach enables a seamless integration into existing models without requiring significant modifications or retraining. In evaluation, we show that the proposed post-hoc approach significantly reduces gender-related associations in NLP models while preserving the overall performance and functionality of the models. An implementation of our method is available: https://github.com/fanny-jourdan/TaCo


Improved learning theory for kernel distribution regression with two-stage sampling

arXiv.org Machine Learning

The distribution regression problem encompasses many important statistics and machine learning tasks, and arises in a large range of applications. Among various existing approaches to tackle this problem, kernel methods have become a method of choice. Indeed, kernel distribution regression is both computationally favorable, and supported by a recent learning theory. This theory also tackles the two-stage sampling setting, where only samples from the input distributions are available. In this paper, we improve the learning theory of kernel distribution regression. We address kernels based on Hilbertian embeddings, that encompass most, if not all, of the existing approaches. We introduce the novel near-unbiased condition on the Hilbertian embeddings, that enables us to provide new error bounds on the effect of the two-stage sampling, thanks to a new analysis. We show that this near-unbiased condition holds for three important classes of kernels, based on optimal transport and mean embedding. As a consequence, we strictly improve the existing convergence rates for these kernels. Our setting and results are illustrated by numerical experiments.


On the explainable properties of 1-Lipschitz Neural Networks: An Optimal Transport Perspective

arXiv.org Artificial Intelligence

Input gradients have a pivotal role in a variety of applications, including adversarial attack algorithms for evaluating model robustness, explainable AI techniques for generating Saliency Maps, and counterfactual explanations. However, Saliency Maps generated by traditional neural networks are often noisy and provide limited insights. In this paper, we demonstrate that, on the contrary, the Saliency Maps of 1-Lipschitz neural networks, learnt with the dual loss of an optimal transportation problem, exhibit desirable XAI properties: They are highly concentrated on the essential parts of the image with low noise, significantly outperforming state-of-the-art explanation approaches across various models and metrics. We also prove that these maps align unprecedentedly well with human explanations on ImageNet. To explain the particularly beneficial properties of the Saliency Map for such models, we prove this gradient encodes both the direction of the transportation plan and the direction towards the nearest adversarial attack. Following the gradient down to the decision boundary is no longer considered an adversarial attack, but rather a counterfactual explanation that explicitly transports the input from one class to another. Thus, Learning with such a loss jointly optimizes the classification objective and the alignment of the gradient , i.e. the Saliency Map, to the transportation plan direction. These networks were previously known to be certifiably robust by design, and we demonstrate that they scale well for large problems and models, and are tailored for explainability using a fast and straightforward method.


GAN Estimation of Lipschitz Optimal Transport Maps

arXiv.org Machine Learning

This paper introduces the first statistically consistent estimator of the optimal transport map between two probability distributions, based on neural networks. Building on theoretical and practical advances in the field of Lipschitz neural networks, we define a Lipschitz-constrained generative adversarial network penalized by the quadratic transportation cost. Then, we demonstrate that, under regularity assumptions, the obtained generator converges uniformly to the optimal transport map as the sample size increases to infinity. Furthermore, we show through a number of numerical experiments that the learnt mapping has promising performances. In contrast to previous work tackling either statistical guarantees or practicality, we provide an expressive and feasible estimator which paves way for optimal transport applications where the asymptotic behaviour must be certified.


The Many Faces of 1-Lipschitz Neural Networks

arXiv.org Artificial Intelligence

Lipschitz constrained models have been used to solve specifics deep learning problems such as the estimation of Wasserstein distance for GAN, or the training of neural networks robust to adversarial attacks. Regardless the novel and effective algorithms to build such 1-Lipschitz networks, their usage remains marginal, and they are commonly considered as less expressive and less able to fit properly the data than their unconstrained counterpart. The goal of this paper is to demonstrate that, despite being empirically harder to train, 1-Lipschitz neural networks are theoretically better grounded than unconstrained ones when it comes to classification. We recall some results about 1-Lipschitz functions in the scope of deep learning and we extend and illustrate them to derive general properties for classification. We propose and demonstrate several new properties of 1-Lipschitz neural networks for classification. First, we show they can fit arbitrarily difficult frontiers, making them as expressive as classical ones, in addition to provide robustness certificates. We prove that when minimizing cross entropy loss the optimization problem under Lipschitz constraint is well posed and its solution generalizes well in the limit of big datasets, whereas regular neural networks can diverge even on remarkably simple situations. Then, we study the link between classification with 1-Lipschitz network and optimal transport thanks to regularized versions of Kantorovich-Rubinstein duality theory. Last, we derive preliminary bounds on their VC dimensions.


Hierarchical and Unsupervised Graph Representation Learning with Loukas's Coarsening

arXiv.org Machine Learning

We propose a novel algorithm for unsupervised graph representation learning with attributed graphs. It combines three advantages addressing some current limitations of the literature: i) The model is inductive: it can embed new graphs without re-training in the presence of new data; ii) The method takes into account both micro-structures and macro-structures by looking at the attributed graphs at different scales; iii) The model is end-to-end differentiable: it is a building block that can be plugged into deep learning pipelines and allows for back-propagation. We show that combining a coarsening method having strong theoretical guarantees with mutual information maximization suffices to produce high quality embeddings. We evaluate them on classification tasks with common benchmarks of the literature. We show that our algorithm is competitive with state of the art among unsupervised graph representation learning methods.