Not enough data to create a plot.
Try a different view from the menu above.
Augenstein, Isabelle
Multi-Modal Framing Analysis of News
Arora, Arnav, Yadav, Srishti, Antoniak, Maria, Belongie, Serge, Augenstein, Isabelle
Automated frame analysis of political communication is a popular task in computational social science that is used to study how authors select aspects of a topic to frame its reception. So far, such studies have been narrow, in that they use a fixed set of pre-defined frames and focus only on the text, ignoring the visual contexts in which those texts appear. Especially for framing in the news, this leaves out valuable information about editorial choices, which include not just the written article but also accompanying photographs. To overcome such limitations, we present a method for conducting multi-modal, multi-label framing analysis at scale using large (vision-)language models. Grounding our work in framing theory, we extract latent meaning embedded in images used to convey a certain point and contrast that to the text by comparing the respective frames used. We also identify highly partisan framing of topics with issue-specific frame analysis found in prior qualitative work. We demonstrate a method for doing scalable integrative framing analysis of both text and image in news, providing a more complete picture for understanding media bias.
A Meta-Evaluation of Style and Attribute Transfer Metrics
Pauli, Amalie Brogaard, Augenstein, Isabelle, Assent, Ira
LLMs make it easy to rewrite text in any style, be it more polite, persuasive, or more positive. We present a large-scale study of evaluation metrics for style and attribute transfer with a focus on content preservation; meaning content not attributed to the style shift is preserved. The de facto evaluation approach uses lexical or semantic similarity metrics often between source sentences and rewrites. While these metrics are not designed to distinguish between style or content differences, empirical meta-evaluation shows a reasonable correlation to human judgment. In fact, recent works find that LLMs prompted as evaluators are only comparable to semantic similarity metrics, even though intuitively, the LLM approach should better fit the task. To investigate this discrepancy, we benchmark 8 metrics for evaluating content preservation on existing datasets and additionally construct a new test set that better aligns with the meta-evaluation aim. Indeed, we then find that the empirical conclusion aligns with the intuition: content preservation metrics for style/attribute transfer must be conditional on the style shift. To support this, we propose a new efficient zero-shot evaluation method using the likelihood of the next token. We hope our meta-evaluation can foster more research on evaluating content preservation metrics, and also to ensure fair evaluation of methods for conducting style transfer.
Unstructured Evidence Attribution for Long Context Query Focused Summarization
Wright, Dustin, Mujahid, Zain Muhammad, Wang, Lu, Augenstein, Isabelle, Jurgens, David
Large language models (LLMs) are capable of generating coherent summaries from very long contexts given a user query. Extracting and properly citing evidence spans could help improve the transparency and reliability of these summaries. At the same time, LLMs suffer from positional biases in terms of which information they understand and attend to, which could affect evidence citation. Whereas previous work has focused on evidence citation with predefined levels of granularity (e.g. sentence, paragraph, document, etc.), we propose the task of long-context query focused summarization with unstructured evidence citation. We show how existing systems struggle to generate and properly cite unstructured evidence from their context, and that evidence tends to be "lost-in-the-middle". To help mitigate this, we create the Summaries with Unstructured Evidence Text dataset (SUnsET), a synthetic dataset generated using a novel domain-agnostic pipeline which can be used as supervision to adapt LLMs to this task. We demonstrate across 5 LLMs of different sizes and 4 datasets with varying document types and lengths that LLMs adapted with SUnsET data generate more relevant and factually consistent evidence than their base models, extract evidence from more diverse locations in their context, and can generate more relevant and consistent summaries.
Can Community Notes Replace Professional Fact-Checkers?
Borenstein, Nadav, Warren, Greta, Elliott, Desmond, Augenstein, Isabelle
Two commonly-employed strategies to combat the rise of misinformation on social media are (i) fact-checking by professional organisations and (ii) community moderation by platform users. Policy changes by Twitter/X and, more recently, Meta, signal a shift away from partnerships with fact-checking organisations and towards an increased reliance on crowdsourced community notes. However, the extent and nature of dependencies between fact-checking and helpful community notes remain unclear. To address these questions, we use language models to annotate a large corpus of Twitter/X community notes with attributes such as topic, cited sources, and whether they refute claims tied to broader misinformation narratives. Our analysis reveals that community notes cite fact-checking sources up to five times more than previously reported. Fact-checking is especially crucial for notes on posts linked to broader narratives, which are twice as likely to reference fact-checking sources compared to other sources. In conclusion, our results show that successful community moderation heavily relies on professional fact-checking.
Presumed Cultural Identity: How Names Shape LLM Responses
Pawar, Siddhesh, Arora, Arnav, Kaffee, Lucie-Aimรฉe, Augenstein, Isabelle
Names are deeply tied to human identity. They can serve as markers of individuality, cultural heritage, and personal history. However, using names as a core indicator of identity can lead to over-simplification of complex identities. When interacting with LLMs, user names are an important point of information for personalisation. Names can enter chatbot conversations through direct user input (requested by chatbots), as part of task contexts such as CV reviews, or as built-in memory features that store user information for personalisation. We study biases associated with names by measuring cultural presumptions in the responses generated by LLMs when presented with common suggestion-seeking queries, which might involve making assumptions about the user. Our analyses demonstrate strong assumptions about cultural identity associated with names present in LLM generations across multiple cultures. Our work has implications for designing more nuanced personalisation systems that avoid reinforcing stereotypes while maintaining meaningful customisation.
Show Me the Work: Fact-Checkers' Requirements for Explainable Automated Fact-Checking
Warren, Greta, Shklovski, Irina, Augenstein, Isabelle
The pervasiveness of large language models and generative AI in online media has amplified the need for effective automated fact-checking to assist fact-checkers in tackling the increasing volume and sophistication of misinformation. The complex nature of fact-checking demands that automated fact-checking systems provide explanations that enable fact-checkers to scrutinise their outputs. However, it is unclear how these explanations should align with the decision-making and reasoning processes of fact-checkers to be effectively integrated into their workflows. Through semi-structured interviews with fact-checking professionals, we bridge this gap by: (i) providing an account of how fact-checkers assess evidence, make decisions, and explain their processes; (ii) examining how fact-checkers use automated tools in practice; and (iii) identifying fact-checker explanation requirements for automated fact-checking tools. The findings show unmet explanation needs and identify important criteria for replicable fact-checking explanations that trace the model's reasoning path, reference specific evidence, and highlight uncertainty and information gaps.
Specializing Large Language Models to Simulate Survey Response Distributions for Global Populations
Cao, Yong, Liu, Haijiang, Arora, Arnav, Augenstein, Isabelle, Rรถttger, Paul, Hershcovich, Daniel
Large-scale surveys are essential tools for informing social science research and policy, but running surveys is costly and time-intensive. If we could accurately simulate group-level survey results, this would therefore be very valuable to social science research. Prior work has explored the use of large language models (LLMs) for simulating human behaviors, mostly through prompting. In this paper, we are the first to specialize LLMs for the task of simulating survey response distributions. As a testbed, we use country-level results from two global cultural surveys. We devise a fine-tuning method based on first-token probabilities to minimize divergence between predicted and actual response distributions for a given question. Then, we show that this method substantially outperforms other methods and zero-shot classifiers, even on unseen questions, countries, and a completely unseen survey. While even our best models struggle with the task, especially on unseen questions, our results demonstrate the benefits of specialization for simulation, which may accelerate progress towards sufficiently accurate simulation in the future.
Collecting Cost-Effective, High-Quality Truthfulness Assessments with LLM Summarized Evidence
Roitero, Kevin, Wright, Dustin, Soprano, Michael, Augenstein, Isabelle, Mizzaro, Stefano
With the degradation of guardrails against mis- and disinformation online, it is more critical than ever to be able to effectively combat it. In this paper, we explore the efficiency and effectiveness of using crowd-sourced truthfulness assessments based on condensed, large language model (LLM) generated summaries of online sources. We compare the use of generated summaries to the use of original web pages in an A/B testing setting, where we employ a large and diverse pool of crowd-workers to perform the truthfulness assessment. We evaluate the quality of assessments, the efficiency with which assessments are performed, and the behavior and engagement of participants. Our results demonstrate that the Summary modality, which relies on summarized evidence, offers no significant change in assessment accuracy over the Standard modality, while significantly increasing the speed with which assessments are performed. Workers using summarized evidence produce a significantly higher number of assessments in the same time frame, reducing the cost needed to acquire truthfulness assessments. Additionally, the Summary modality maximizes both the inter-annotator agreements as well as the reliance on and perceived usefulness of evidence, demonstrating the utility of summarized evidence without sacrificing the quality of assessments.
With Great Backbones Comes Great Adversarial Transferability
Arakelyan, Erik, Hambardzumyan, Karen, Papikyan, Davit, Minervini, Pasquale, Gordo, Albert, Augenstein, Isabelle, Markosyan, Aram H.
Advances in self-supervised learning (SSL) for machine vision have improved representation robustness and model performance, giving rise to pre-trained backbones like \emph{ResNet} and \emph{ViT} models tuned with SSL methods such as \emph{SimCLR}. Due to the computational and data demands of pre-training, the utilization of such backbones becomes a strenuous necessity. However, employing these backbones may inherit vulnerabilities to adversarial attacks. While adversarial robustness has been studied under \emph{white-box} and \emph{black-box} settings, the robustness of models tuned on pre-trained backbones remains largely unexplored. Additionally, the role of tuning meta-information in mitigating exploitation risks is unclear. This work systematically evaluates the adversarial robustness of such models across $20,000$ combinations of tuning meta-information, including fine-tuning techniques, backbone families, datasets, and attack types. We propose using proxy models to transfer attacks, simulating varying levels of target knowledge by fine-tuning these proxies with diverse configurations. Our findings reveal that proxy-based attacks approach the effectiveness of \emph{white-box} methods, even with minimal tuning knowledge. We also introduce a naive "backbone attack," leveraging only the backbone to generate adversarial samples, which outperforms \emph{black-box} attacks and rivals \emph{white-box} methods, highlighting critical risks in model-sharing practices. Finally, our ablations reveal how increasing tuning meta-information impacts attack transferability, measuring each meta-information combination.
FLARE: Faithful Logic-Aided Reasoning and Exploration
Arakelyan, Erik, Minervini, Pasquale, Verga, Pat, Lewis, Patrick, Augenstein, Isabelle
Modern Question Answering (QA) and Reasoning approaches based on Large Language Models (LLMs) commonly use prompting techniques, such as Chain-of-Thought (CoT), assuming the resulting generation will have a more granular exploration and reasoning over the question space and scope. However, such methods struggle with generating outputs that are faithful to the intermediate chain of reasoning produced by the model. On the other end of the spectrum, neuro-symbolic methods such as Faithful CoT (F-CoT) propose to combine LLMs with external symbolic solvers. While such approaches boast a high degree of faithfulness, they usually require a model trained for code generation and struggle with tasks that are ambiguous or hard to formalise strictly. We introduce $\textbf{F}$aithful $\textbf{L}$ogic-$\textbf{A}$ided $\textbf{R}$easoning and $\textbf{E}$xploration ($\textbf{FLARE}$), a novel interpretable approach for traversing the problem space using task decompositions. We use the LLM to plan a solution, soft-formalise the query into facts and predicates using a logic programming code and simulate that code execution using an exhaustive multi-hop search over the defined space. Our method allows us to compute the faithfulness of the reasoning process w.r.t. the generated code and analyse the steps of the multi-hop search without relying on external solvers. Our methods achieve SOTA results on $\mathbf{7}$ out of $\mathbf{9}$ diverse reasoning benchmarks. We also show that model faithfulness positively correlates with overall performance and further demonstrate that $\textbf{FLARE}$ allows pinpointing the decisive factors sufficient for and leading to the correct answer with optimal reasoning during the multi-hop search.