Aly, Ahmed
CoSMoEs: Compact Sparse Mixture of Experts
Huber, Patrick, Shrivastava, Akshat, Chang, Ernie, Sankar, Chinnadhurai, Aly, Ahmed, Sagar, Adithya
Sparse Mixture of Expert (MoE) models are popular foundational architectures at large scale, however, under-explored at smaller sizes. Here, we show how to enable Compact Sparse Mixture of Experts (CoSMoEs) for on-device inference. Specifically, we tackle the three main on-device dimensions: Quality, Memory and Latency. Along the quality axis, we show that in a fair evaluation (removing confounding factors) MoE architectures outperform FLOP-aligned dense models at on-device scale. We introduce weight-decomposed experts, further improving the MoE model performance. Regarding model memory and latency, we significantly improve model offloading efficiency and, in turn, reduce model inference latency.
Language and Planning in Robotic Navigation: A Multilingual Evaluation of State-of-the-Art Models
Mansour, Malak, Aly, Ahmed, Tharwat, Bahey, Hashmi, Sarim, An, Dong, Reid, Ian
Large Language Models (LLMs) such as GPT-4, trained on huge amount of datasets spanning multiple domains, exhibit significant reasoning, understanding, and planning capabilities across various tasks. This study presents the first-ever work in Arabic language integration within the Vision-and-Language Navigation (VLN) domain in robotics, an area that has been notably underexplored in existing research. We perform a comprehensive evaluation of state-of-the-art multi-lingual Small Language Models (SLMs), including GPT-4o mini, Llama 3 8B, and Phi-3 medium 14B, alongside the Arabic-centric LLM, Jais. Our approach utilizes the NavGPT framework, a pure LLM-based instruction-following navigation agent, to assess the impact of language on navigation reasoning through zero-shot sequential action prediction using the R2R dataset. Through comprehensive experiments, we demonstrate that our framework is capable of high-level planning for navigation tasks when provided with instructions in both English and Arabic. However, certain models struggled with reasoning and planning in the Arabic language due to inherent limitations in their capabilities, sub-optimal performance, and parsing issues. These findings highlight the importance of enhancing planning and reasoning capabilities in language models for effective navigation, emphasizing this as a key area for further development while also unlocking the potential of Arabic-language models for impactful real-world applications.
PRoDeliberation: Parallel Robust Deliberation for End-to-End Spoken Language Understanding
Le, Trang, Lazar, Daniel, Kim, Suyoun, Jiang, Shan, Le, Duc, Sagar, Adithya, Livshits, Aleksandr, Aly, Ahmed, Shrivastava, Akshat
Spoken Language Understanding (SLU) is a critical component of voice assistants; it consists of converting speech to semantic parses for task execution. Previous works have explored end-to-end models to improve the quality and robustness of SLU models with Deliberation, however these models have remained autoregressive, resulting in higher latencies. In this work we introduce PRoDeliberation, a novel method leveraging a Connectionist Temporal Classification-based decoding strategy as well as a denoising objective to train robust non-autoregressive deliberation models. We show that PRoDeliberation achieves the latency reduction of parallel decoding (2-10x improvement over autoregressive models) while retaining the ability to correct Automatic Speech Recognition (ASR) mistranscriptions of autoregressive deliberation systems. We further show that the design of the denoising training allows PRoDeliberation to overcome the limitations of small ASR devices, and we provide analysis on the necessity of each component of the system.
Small But Funny: A Feedback-Driven Approach to Humor Distillation
Ravi, Sahithya, Huber, Patrick, Shrivastava, Akshat, Sagar, Aditya, Aly, Ahmed, Shwartz, Vered, Einolghozati, Arash
The emergence of Large Language Models (LLMs) has brought to light promising language generation capabilities, particularly in performing tasks like complex reasoning and creative writing. Consequently, distillation through imitation of teacher responses has emerged as a popular technique to transfer knowledge from LLMs to more accessible, Small Language Models (SLMs). While this works well for simpler tasks, there is a substantial performance gap on tasks requiring intricate language comprehension and creativity, such as humor generation. We hypothesize that this gap may stem from the fact that creative tasks might be hard to learn by imitation alone and explore whether an approach, involving supplementary guidance from the teacher, could yield higher performance. To address this, we study the effect of assigning a dual role to the LLM - as a "teacher" generating data, as well as a "critic" evaluating the student's performance. Our experiments on humor generation reveal that the incorporation of feedback significantly narrows the performance gap between SLMs and their larger counterparts compared to merely relying on imitation. As a result, our research highlights the potential of using feedback as an additional dimension to data when transferring complex language abilities via distillation.