Plotting

 Althoff, Matthias


Human-Robot Gym: Benchmarking Reinforcement Learning in Human-Robot Collaboration

arXiv.org Artificial Intelligence

Deep reinforcement learning (RL) has shown promising results in robot motion planning with first attempts in human-robot collaboration (HRC). However, a fair comparison of RL approaches in HRC under the constraint of guaranteed safety is yet to be made. We, therefore, present human-robot gym, a benchmark for safe RL in HRC. Our benchmark provides eight challenging, realistic HRC tasks in a modular simulation framework. Most importantly, human-robot gym includes a safety shield that provably guarantees human safety. We are, thereby, the first to provide a benchmark to train RL agents that adhere to the safety specifications of real-world HRC. This bridges a critical gap between theoretic RL research and its real-world deployment. Our evaluation of six environments led to three key results: (a) the diverse nature of the tasks offered by human-robot gym creates a challenging benchmark for state-of-the-art RL methods, (b) incorporating expert knowledge in the RL training in the form of an action-based reward can outperform the expert, and (c) our agents negligibly overfit to training data.


CoBRA: A Composable Benchmark for Robotics Applications

arXiv.org Artificial Intelligence

Today, selecting an optimal robot, its base pose, and trajectory for a given task is currently mainly done by human expertise or trial and error. To evaluate automatic approaches to this combined optimization problem, we introduce a benchmark suite encompassing a unified format for robots, environments, and task descriptions. Our benchmark suite is especially useful for modular robots, where the multitude of robots that can be assembled creates a host of additional parameters to optimize. We include tasks such as machine tending and welding in completely synthetic environments and 3D scans of real-world machine shops. The benchmark suite defines these optimization problems and facilitates the comparison of solution algorithms. All benchmarks are accessible through cobra.cps.cit.tum.de, a platform to conveniently share, reference, and compare tasks, robot models, and solutions.


Safe Reinforcement Learning with Probabilistic Guarantees Satisfying Temporal Logic Specifications in Continuous Action Spaces

arXiv.org Artificial Intelligence

Vanilla Reinforcement Learning (RL) can efficiently solve complex tasks but does not provide any guarantees on system behavior. To bridge this gap, we propose a three-step safe RL procedure for continuous action spaces that provides probabilistic guarantees with respect to temporal logic specifications. First, our approach probabilistically verifies a candidate controller with respect to a temporal logic specification while randomizing the control inputs to the system within a bounded set. Second, we improve the performance of this probabilistically verified controller by adding an RL agent that optimizes the verified controller for performance in the same bounded set around the control input. Third, we verify probabilistic safety guarantees with respect to temporal logic specifications for the learned agent. Our approach is efficiently implementable for continuous action and state spaces. The separation of safety verification and performance improvement into two distinct steps realizes both explicit probabilistic safety guarantees and a straightforward RL setup that focuses on performance. We evaluate our approach on an evasion task where a robot has to reach a goal while evading a dynamic obstacle with a specific maneuver. Our results show that our safe RL approach leads to efficient learning while maintaining its probabilistic safety specification.


Reducing Safety Interventions in Provably Safe Reinforcement Learning

arXiv.org Artificial Intelligence

Deep Reinforcement Learning (RL) has shown promise in addressing complex robotic challenges. In real-world applications, RL is often accompanied by failsafe controllers as a last resort to avoid catastrophic events. While necessary for safety, these interventions can result in undesirable behaviors, such as abrupt braking or aggressive steering. This paper proposes two safety intervention reduction methods: proactive replacement and proactive projection, which change the action of the agent if it leads to a potential failsafe intervention. These approaches are compared to state-of-the-art constrained RL on the OpenAI safety gym benchmark and a human-robot collaboration task. Our study demonstrates that the combination of our method with provably safe RL leads to high-performing policies with zero safety violations and a low number of failsafe interventions. Our versatile method can be applied to a wide range of real-world robotic tasks, while effectively improving safety without sacrificing task performance.


Timor Python: A Toolbox for Industrial Modular Robotics

arXiv.org Artificial Intelligence

Modular Reconfigurable Robots (MRRs) represent an exciting path forward for industrial robotics, opening up new possibilities for robot design. Compared to monolithic manipulators, they promise greater flexibility, improved maintainability, and cost-efficiency. However, there is no tool or standardized way to model and simulate assemblies of modules in the same way it has been done for robotic manipulators for decades. We introduce the Toolbox for Industrial Modular Robotics (Timor), a Python toolbox to bridge this gap and integrate modular robotics into existing simulation and optimization pipelines. Our open-source library offers model generation and task-based configuration optimization for MRRs. It can easily be integrated with existing simulation tools - not least by offering URDF export of arbitrary modular robot assemblies. Moreover, our experimental study demonstrates the effectiveness of Timor as a tool for designing modular robots optimized for specific use cases.


Optimizing Modular Robot Composition: A Lexicographic Genetic Algorithm Approach

arXiv.org Artificial Intelligence

Industrial robots are designed as general-purpose hardware, which limits their ability to adapt to changing task requirements or environments. Modular robots, on the other hand, offer flexibility and can be easily customized to suit diverse needs. The morphology, i.e., the form and structure of a robot, significantly impacts the primary performance metrics acquisition cost, cycle time, and energy efficiency. However, identifying an optimal module composition for a specific task remains an open problem, presenting a substantial hurdle in developing task-tailored modular robots. Previous approaches either lack adequate exploration of the design space or the possibility to adapt to complex tasks. We propose combining a genetic algorithm with a lexicographic evaluation of solution candidates to overcome this problem and navigate search spaces exceeding those in prior work by magnitudes in the number of possible compositions. We demonstrate that our approach outperforms a state-of-the-art baseline and is able to synthesize modular robots for industrial tasks in cluttered environments.


Guarantees for Real Robotic Systems: Unifying Formal Controller Synthesis and Reachset-Conformant Identification

arXiv.org Artificial Intelligence

Robots are used increasingly often in safety-critical scenarios, such as robotic surgery or human-robot interaction. To ensure stringent performance criteria, formal controller synthesis is a promising direction to guarantee that robots behave as desired. However, formally ensured properties only transfer to the real robot when the model is appropriate. We address this problem by combining the identification of a reachset-conformant model with controller synthesis. Since the reachset-conformant model contains all the measured behaviors of the real robot, the safety properties of the model transfer to the real robot. The transferability is demonstrated by experiments on a real robot, for which we synthesize tracking controllers.


Formal Verification of Robotic Contact Tasks via Reachability Analysis

arXiv.org Artificial Intelligence

Verifying the correct behavior of robots in contact tasks is challenging due to model uncertainties associated with contacts. Standard methods for testing often fall short since all (uncountable many) solutions cannot be obtained. Instead, we propose to formally and efficiently verify robot behaviors in contact tasks using reachability analysis, which enables checking all the reachable states against user-provided specifications. To this end, we extend the state of the art in reachability analysis for hybrid (mixed discrete and continuous) dynamics subject to discrete-time input trajectories. In particular, we present a novel and scalable guard intersection approach to reliably compute the complex behavior caused by contacts. We model robots subject to contacts as hybrid automata in which crucial time delays are included. The usefulness of our approach is demonstrated by verifying safe human-robot interaction in the presence of constrained collisions, which was out of reach for existing methods.


Automatic Traffic Scenario Conversion from OpenSCENARIO to CommonRoad

arXiv.org Artificial Intelligence

Scenarios are a crucial element for developing, testing, and verifying autonomous driving systems. However, open-source scenarios are often formulated using different terminologies. This limits their usage across different applications as many scenario representation formats are not directly compatible with each other. To address this problem, we present the first open-source converter from the OpenSCENARIO format to the CommonRoad format, which are two of the most popular scenario formats used in autonomous driving. Our converter employs a simulation tool to execute the dynamic elements defined by OpenSCENARIO. The converter is available at commonroad.in.tum.de and we demonstrate its usefulness by converting publicly available scenarios in the OpenSCENARIO format and evaluating them using CommonRoad tools.


Specification-Driven Neural Network Reduction for Scalable Formal Verification

arXiv.org Artificial Intelligence

Formal verification of neural networks is essential before their deployment in safety-critical settings. However, existing methods for formally verifying neural networks are not yet scalable enough to handle practical problems that involve a large number of neurons. In this work, we propose a novel approach to address this challenge: A conservative neural network reduction approach that ensures that the verification of the reduced network implies the verification of the original network. Our approach constructs the reduction on-the-fly, while simultaneously verifying the original network and its specifications. The reduction merges all neurons of a nonlinear layer with similar outputs and is applicable to neural networks with any type of activation function such as ReLU, sigmoid, and tanh. Our evaluation shows that our approach can reduce a network to less than 5% of the number of neurons and thus to a similar degree the verification time is reduced.