Aliannejadi, Mohammad
Zero-Shot and Efficient Clarification Need Prediction in Conversational Search
Lu, Lili, Meng, Chuan, Ravenda, Federico, Aliannejadi, Mohammad, Crestani, Fabio
Clarification need prediction (CNP) is a key task in conversational search, aiming to predict whether to ask a clarifying question or give an answer to the current user query. However, current research on CNP suffers from the issues of limited CNP training data and low efficiency. In this paper, we propose a zero-shot and efficient CNP framework (Zef-CNP), in which we first prompt large language models (LLMs) in a zero-shot manner to generate two sets of synthetic queries: ambiguous and specific (unambiguous) queries. We then use the generated queries to train efficient CNP models. Zef-CNP eliminates the need for human-annotated clarification-need labels during training and avoids the use of LLMs with high query latency at query time. To further improve the generation quality of synthetic queries, we devise a topic-, information-need-, and query-aware chain-of-thought (CoT) prompting strategy (TIQ-CoT). Moreover, we enhance TIQ-CoT with counterfactual query generation (CoQu), which guides LLMs first to generate a specific/ambiguous query and then sequentially generate its corresponding ambiguous/specific query. Experimental results show that Zef-CNP achieves superior CNP effectiveness and efficiency compared with zero- and few-shot LLM-based CNP predictors.
PSCon: Toward Conversational Product Search
Zou, Jie, Aliannejadi, Mohammad, Kanoulas, Evangelos, Han, Shuxi, Ma, Heli, Wang, Zheng, Yang, Yang, Shen, Heng Tao
Conversational Product Search (CPS) is confined to simulated conversations due to the lack of real-world CPS datasets that reflect human-like language. Additionally, current conversational datasets are limited to support cross-market and multi-lingual usage. In this paper, we introduce a new CPS data collection protocol and present PSCon, a novel CPS dataset designed to assist product search via human-like conversations. The dataset is constructed using a coached human-to-human data collection protocol and supports two languages and dual markets. Also, the dataset enables thorough exploration of six subtasks of CPS: user intent detection, keyword extraction, system action prediction, question selection, item ranking, and response generation. Furthermore, we also offer an analysis of the dataset and propose a benchmark model on the proposed CPS dataset.
Multi-Turn Multi-Modal Question Clarification for Enhanced Conversational Understanding
Ramezan, Kimia, Bavandpour, Alireza Amiri, Yuan, Yifei, Siro, Clemencia, Aliannejadi, Mohammad
Conversational query clarification enables users to refine their search queries through interactive dialogue, improving search effectiveness. Traditional approaches rely on text-based clarifying questions, which often fail to capture complex user preferences, particularly those involving visual attributes. While recent work has explored single-turn multi-modal clarification with images alongside text, such methods do not fully support the progressive nature of user intent refinement over multiple turns. Motivated by this, we introduce the Multi-turn Multi-modal Clarifying Questions (MMCQ) task, which combines text and visual modalities to refine user queries in a multi-turn conversation. To facilitate this task, we create a large-scale dataset named ClariMM comprising over 13k multi-turn interactions and 33k question-answer pairs containing multi-modal clarifying questions. We propose Mario, a retrieval framework that employs a two-phase ranking strategy: initial retrieval with BM25, followed by a multi-modal generative re-ranking model that integrates textual and visual information from conversational history. Our experiments show that multi-turn multi-modal clarification outperforms uni-modal and single-turn approaches, improving MRR by 12.88%. The gains are most significant in longer interactions, demonstrating the value of progressive refinement for complex queries.
Self-seeding and Multi-intent Self-instructing LLMs for Generating Intent-aware Information-Seeking dialogs
Askari, Arian, Petcu, Roxana, Meng, Chuan, Aliannejadi, Mohammad, Abolghasemi, Amin, Kanoulas, Evangelos, Verberne, Suzan
Identifying user intents in information-seeking dialogs is crucial for a system to meet user's information needs. Intent prediction (IP) is challenging and demands sufficient dialogs with human-labeled intents for training. However, manually annotating intents is resource-intensive. While large language models (LLMs) have been shown to be effective in generating synthetic data, there is no study on using LLMs to generate intent-aware information-seeking dialogs. In this paper, we focus on leveraging LLMs for zero-shot generation of large-scale, open-domain, and intent-aware information-seeking dialogs. We propose SOLID, which has novel self-seeding and multi-intent self-instructing schemes. The former improves the generation quality by using the LLM's own knowledge scope to initiate dialog generation; the latter prompts the LLM to generate utterances sequentially, and mitigates the need for manual prompt design by asking the LLM to autonomously adapt its prompt instruction when generating complex multi-intent utterances. Furthermore, we propose SOLID-RL, which is further trained to generate a dialog in one step on the data generated by SOLID. We propose a length-based quality estimation mechanism to assign varying weights to SOLID-generated dialogs based on their quality during the training process of SOLID-RL. We use SOLID and SOLID-RL to generate more than 300k intent-aware dialogs, surpassing the size of existing datasets. Experiments show that IP methods trained on dialogs generated by SOLID and SOLID-RL achieve better IP quality than ones trained on human-generated dialogs.
IRLab@iKAT24: Learned Sparse Retrieval with Multi-aspect LLM Query Generation for Conversational Search
Lupart, Simon, Abbasiantaeb, Zahra, Aliannejadi, Mohammad
The Interactive Knowledge Assistant Track (iKAT) 2024 focuses on advancing conversational assistants, able to adapt their interaction and responses from personalized user knowledge. The track incorporates a Personal Textual Knowledge Base (PTKB) alongside Conversational AI tasks, such as passage ranking and response generation. Query Rewrite being an effective approach for resolving conversational context, we explore Large Language Models (LLMs), as query rewriters. Specifically, our submitted runs explore multi-aspect query generation using the MQ4CS framework, which we further enhance with Learned Sparse Retrieval via the SPLADE architecture, coupled with robust cross-encoder models. We also propose an alternative to the previous interleaving strategy, aggregating multiple aspects during the reranking phase. Our findings indicate that multi-aspect query generation is effective in enhancing performance when integrated with advanced retrieval and reranking models. Our results also lead the way for better personalization in Conversational Search, relying on LLMs to integrate personalization within query rewrite, and outperforming human rewrite performance.
AGENT-CQ: Automatic Generation and Evaluation of Clarifying Questions for Conversational Search with LLMs
Siro, Clemencia, Yuan, Yifei, Aliannejadi, Mohammad, de Rijke, Maarten
Generating diverse and effective clarifying questions is crucial for improving query understanding and retrieval performance in open-domain conversational search (CS) systems. We propose AGENT-CQ (Automatic GENeration, and evaluaTion of Clarifying Questions), an end-to-end LLM-based framework addressing the challenges of scalability and adaptability faced by existing methods that rely on manual curation or template-based approaches. AGENT-CQ consists of two stages: a generation stage employing LLM prompting strategies to generate clarifying questions, and an evaluation stage (CrowdLLM) that simulates human crowdsourcing judgments using multiple LLM instances to assess generated questions and answers based on comprehensive quality metrics. Extensive experiments on the ClariQ dataset demonstrate CrowdLLM's effectiveness in evaluating question and answer quality. Human evaluation and CrowdLLM show that the AGENT-CQ - generation stage, consistently outperforms baselines in various aspects of question and answer quality. In retrieval-based evaluation, LLM-generated questions significantly enhance retrieval effectiveness for both BM25 and cross-encoder models compared to human-generated questions.
DiSCo Meets LLMs: A Unified Approach for Sparse Retrieval and Contextual Distillation in Conversational Search
Lupart, Simon, Aliannejadi, Mohammad, Kanoulas, Evangelos
Conversational Search (CS) is the task of retrieving relevant documents from a corpus within a conversational context, combining retrieval with conversational context modeling. With the explosion of Large Language Models (LLMs), the CS field has seen major improvements with LLMs rewriting user queries, accounting for conversational context. However, engaging LLMs at inference time harms efficiency. Current methods address this by distilling embeddings from human-rewritten queries to learn the context modeling task. Yet, these approaches predominantly focus on context modeling, and only treat the contrastive component of the retrieval task within a distillation-independent loss term. To address these limitations, we propose a new distillation method, as a relaxation of the previous objective, unifying retrieval and context modeling. We relax the existing training objectives by distilling similarity scores between conversations and documents, rather than relying solely on representation learning. Our proposed distillation objective allows for more freedom in the representation space and leverages the contrastive nature of document relevance. Through experiments on Learned Sparse Retrieval (LSR) across 5 CS datasets, our approach demonstrates substantial improvements in both in-domain and out-of-domain retrieval performance, outperforming state-of-the-art with gains of up to 6 points in recall for out-of-domain datasets. Additionally, through the relaxation of the objective, we propose a multi-teacher distillation, using multiple LLMs as teachers, yielding additional gains, and outperforming the teachers themselves in in-domain experiments. Finally, analysis of the sparsity of the models reveals that our distillation allows for better control over the sparsity of the trained models.
Unlocking Markets: A Multilingual Benchmark to Cross-Market Question Answering
Yuan, Yifei, Deng, Yang, Sรธgaard, Anders, Aliannejadi, Mohammad
Users post numerous product-related questions on e-commerce platforms, affecting their purchase decisions. Product-related question answering (PQA) entails utilizing product-related resources to provide precise responses to users. We propose a novel task of Multilingual Cross-market Product-based Question Answering (MCPQA) and define the task as providing answers to product-related questions in a main marketplace by utilizing information from another resource-rich auxiliary marketplace in a multilingual context. We introduce a large-scale dataset comprising over 7 million questions from 17 marketplaces across 11 languages. We then perform automatic translation on the Electronics category of our dataset, naming it as McMarket. We focus on two subtasks: review-based answer generation and product-related question ranking. For each subtask, we label a subset of McMarket using an LLM and further evaluate the quality of the annotations via human assessment. We then conduct experiments to benchmark our dataset, using models ranging from traditional lexical models to LLMs in both single-market and cross-market scenarios across McMarket and the corresponding LLM subset. Results show that incorporating cross-market information significantly enhances performance in both tasks.
Towards Fine-Grained Citation Evaluation in Generated Text: A Comparative Analysis of Faithfulness Metrics
Zhang, Weijia, Aliannejadi, Mohammad, Yuan, Yifei, Pei, Jiahuan, Huang, Jia-Hong, Kanoulas, Evangelos
Large language models (LLMs) often produce unsupported or unverifiable information, known as "hallucinations." To mitigate this, retrieval-augmented LLMs incorporate citations, grounding the content in verifiable sources. Despite such developments, manually assessing how well a citation supports the associated statement remains a major challenge. Previous studies use faithfulness metrics to estimate citation support automatically but are limited to binary classification, overlooking fine-grained citation support in practical scenarios. To investigate the effectiveness of faithfulness metrics in fine-grained scenarios, we propose a comparative evaluation framework that assesses the metric effectiveness in distinguishinging citations between three-category support levels: full, partial, and no support. Our framework employs correlation analysis, classification evaluation, and retrieval evaluation to measure the alignment between metric scores and human judgments comprehensively. Our results show no single metric consistently excels across all evaluations, revealing the complexity of assessing fine-grained support. Based on the findings, we provide practical recommendations for developing more effective metrics.
Query Performance Prediction using Relevance Judgments Generated by Large Language Models
Meng, Chuan, Arabzadeh, Negar, Askari, Arian, Aliannejadi, Mohammad, de Rijke, Maarten
Query performance prediction (QPP) aims to estimate the retrieval quality of a search system for a query without human relevance judgments. Previous QPP methods typically return a single scalar value and do not require the predicted values to approximate a specific information retrieval (IR) evaluation measure, leading to certain drawbacks: (i) a single scalar is insufficient to accurately represent different IR evaluation measures, especially when metrics do not highly correlate, and (ii) a single scalar limits the interpretability of QPP methods because solely using a scalar is insufficient to explain QPP results. To address these issues, we propose a QPP framework using automatically generated relevance judgments (QPP-GenRE), which decomposes QPP into independent subtasks of predicting the relevance of each item in a ranked list to a given query. This allows us to predict any IR evaluation measure using the generated relevance judgments as pseudo-labels. This also allows us to interpret predicted IR evaluation measures, and identify, track and rectify errors in generated relevance judgments to improve QPP quality. We predict an item's relevance by using open-source large language models (LLMs) to ensure scientific reproducibility. We face two main challenges: (i) excessive computational costs of judging an entire corpus for predicting a metric considering recall, and (ii) limited performance in prompting open-source LLMs in a zero-/few-shot manner. To solve the challenges, we devise an approximation strategy to predict an IR measure considering recall and propose to fine-tune open-source LLMs using human-labeled relevance judgments. Experiments on the TREC 2019-2022 deep learning tracks show that QPP-GenRE achieves state-of-the-art QPP quality for both lexical and neural rankers.