Afkanpour, Arash
Advancing Medical Representation Learning Through High-Quality Data
Baghbanzadeh, Negin, Fallahpour, Adibvafa, Parhizkar, Yasaman, Ogidi, Franklin, Roy, Shuvendu, Ashkezari, Sajad, Khazaie, Vahid Reza, Colacci, Michael, Etemad, Ali, Afkanpour, Arash, Dolatabadi, Elham
Despite the growing scale of medical Vision-Language datasets, the impact of dataset quality on model performance remains under-explored. We introduce Open-PMC, a high-quality medical dataset from PubMed Central, containing 2.2 million image-text pairs, enriched with image modality annotations, subfigures, and summarized in-text references. Notably, the in-text references provide richer medical context, extending beyond the abstract information typically found in captions. Through extensive experiments, we benchmark Open-PMC against larger datasets across retrieval and zero-shot classification tasks. Our results show that dataset quality-not just size-drives significant performance gains. We complement our benchmark with an in-depth analysis of feature representation. Our findings highlight the crucial role of data curation quality in advancing multimodal medical AI. We release Open-PMC, along with the trained models and our codebase.
Benchmarking Vision-Language Contrastive Methods for Medical Representation Learning
Roy, Shuvendu, Parhizkar, Yasaman, Ogidi, Franklin, Khazaie, Vahid Reza, Colacci, Michael, Etemad, Ali, Dolatabadi, Elham, Afkanpour, Arash
We perform a comprehensive benchmarking of contrastive frameworks for learning multimodal representations in the medical domain. Through this study, we aim to answer the following research questions: (i) How transferable are general-domain representations to the medical domain? (ii) Is multimodal contrastive training sufficient, or does it benefit from unimodal training as well? (iii) What is the impact of feature granularity on the effectiveness of multimodal medical representation learning? To answer these questions, we investigate eight contrastive learning approaches under identical training setups, and train them on 2.8 million image-text pairs from four datasets, and evaluate them on 25 downstream tasks, including classification (zero-shot and linear probing), image-to-text and text-to-image retrieval, and visual question-answering. Our findings suggest a positive answer to the first question, a negative answer to the second question, and the benefit of learning fine-grained features. Finally, we make our code publicly available.
Can Generative Models Improve Self-Supervised Representation Learning?
Ayromlou, Sana, Afkanpour, Arash, Khazaie, Vahid Reza, Forghani, Fereshteh
The rapid advancement in self-supervised learning (SSL) has highlighted its potential to leverage unlabeled data for learning rich visual representations. However, the existing SSL techniques, particularly those employing different augmentations of the same image, often rely on a limited set of simple transformations that are not representative of real-world data variations. This constrains the diversity and quality of samples, which leads to sub-optimal representations. In this paper, we introduce a novel framework that enriches the SSL paradigm by utilizing generative models to produce semantically consistent image augmentations. By directly conditioning generative models on a source image representation, our method enables the generation of diverse augmentations while maintaining the semantics of the source image, thus offering a richer set of data for self-supervised learning. Our extensive experimental results on various SSL methods demonstrate that our framework significantly enhances the quality of learned visual representations by up to 10\% Top-1 accuracy in downstream tasks. This research demonstrates that incorporating generative models into the SSL workflow opens new avenues for exploring the potential of synthetic data. This development paves the way for more robust and versatile representation learning techniques.
EHRMamba: Towards Generalizable and Scalable Foundation Models for Electronic Health Records
Fallahpour, Adibvafa, Alinoori, Mahshid, Afkanpour, Arash, Krishnan, Amrit
Transformers have significantly advanced the modeling of Electronic Health Records (EHR), yet their deployment in real-world healthcare is limited by several key challenges. Firstly, the quadratic computational cost and insufficient context length of these models pose significant obstacles for hospitals in processing the extensive medical histories typical in EHR data. Additionally, existing models employ separate finetuning for each clinical task, complicating maintenance in healthcare environments. Moreover, these models focus exclusively on either clinical prediction or EHR forecasting, lacking the flexibility to perform well across both. To overcome these limitations, we introduce EHRMamba, a robust foundation model built on the Mamba architecture. EHRMamba can process sequences up to four times longer than previous models due to its linear computational cost. We also introduce a novel approach to Multitask Prompted Finetuning (MTF) for EHR data, which enables EHRMamba to simultaneously learn multiple clinical tasks in a single finetuning phase, significantly enhancing deployment and cross-task generalization. Furthermore, our model leverages the HL7 FHIR data standard to simplify integration into existing hospital systems. Alongside EHRMamba, we open-source Odyssey, a toolkit designed to support the development and deployment of EHR foundation models, with an emphasis on data standardization and interpretability. Our evaluations on the MIMIC-IV dataset demonstrate that EHRMamba advances state-of-the-art performance across 6 major clinical tasks and excels in EHR forecasting, marking a significant leap forward in the field.
Random Field Augmentations for Self-Supervised Representation Learning
Mansfield, Philip Andrew, Afkanpour, Arash, Morningstar, Warren Richard, Singhal, Karan
Self-supervised representation learning is heavily dependent on data augmentations to specify the invariances encoded in representations. Previous work has shown that applying diverse data augmentations is crucial to downstream performance, but augmentation techniques remain under-explored. In this work, we propose a new family of local transformations based on Gaussian random fields to generate image augmentations for self-supervised representation learning. These transformations generalize the well-established affine and color transformations (translation, rotation, color jitter, etc.) and greatly increase the space of augmentations by allowing transformation parameter values to vary from pixel to pixel. The parameters are treated as continuous functions of spatial coordinates, and modeled as independent Gaussian random fields. Empirical results show the effectiveness of the new transformations for self-supervised representation learning. Specifically, we achieve a 1.7% top-1 accuracy improvement over baseline on ImageNet downstream classification, and a 3.6% improvement on out-of-distribution iNaturalist downstream classification. However, due to the flexibility of the new transformations, learned representations are sensitive to hyperparameters. While mild transformations improve representations, we observe that strong transformations can degrade the structure of an image, indicating that balancing the diversity and strength of augmentations is important for improving generalization of learned representations.
Federated Variational Inference: Towards Improved Personalization and Generalization
Vedadi, Elahe, Dillon, Joshua V., Mansfield, Philip Andrew, Singhal, Karan, Afkanpour, Arash, Morningstar, Warren Richard
Conventional federated learning algorithms train a single global model by leveraging all participating clients' data. However, due to heterogeneity in client generative distributions and predictive models, these approaches may not appropriately approximate the predictive process, converge to an optimal state, or generalize to new clients. We study personalization and generalization in stateless cross-device federated learning setups assuming heterogeneity in client data distributions and predictive models. We first propose a hierarchical generative model and formalize it using Bayesian Inference. We then approximate this process using Variational Inference to train our model efficiently. We call this algorithm Federated Variational Inference (FedVI). We use PAC-Bayes analysis to provide generalization bounds for FedVI. We evaluate our model on FEMNIST and CIFAR-100 image classification and show that FedVI beats the state-of-the-art on both tasks.
Federated Training of Dual Encoding Models on Small Non-IID Client Datasets
Vemulapalli, Raviteja, Morningstar, Warren Richard, Mansfield, Philip Andrew, Eichner, Hubert, Singhal, Karan, Afkanpour, Arash, Green, Bradley
Dual encoding models that encode a pair of inputs are widely used for representation learning. Many approaches train dual encoding models by maximizing agreement between pairs of encodings on centralized training data. However, in many scenarios, datasets are inherently decentralized across many clients (user devices or organizations) due to privacy concerns, motivating federated learning. In this work, we focus on federated training of dual encoding models on decentralized data composed of many small, non-IID (independent and identically distributed) client datasets. We show that existing approaches that work well in centralized settings perform poorly when naively adapted to this setting using federated averaging. We observe that, we can simulate large-batch loss computation on individual clients for loss functions that are based on encoding statistics. Based on this insight, we propose a novel federated training approach, Distributed Cross Correlation Optimization (DCCO), which trains dual encoding models using encoding statistics aggregated across clients, without sharing individual data samples. Our experimental results on two datasets demonstrate that the proposed DCCO approach outperforms federated variants of existing approaches by a large margin.
An Empirical Study of Neural Kernel Bandits
Lisicki, Michal, Afkanpour, Arash, Taylor, Graham W.
Neural bandits have enabled practitioners to operate efficiently on problems with non-linear reward functions. While in general contextual bandits commonly utilize Gaussian process (GP) predictive distributions for decision making, the most successful neural variants use only the last layer parameters in the derivation. Research on neural kernels (NK) has recently established a correspondence between deep networks and GPs that take into account all the parameters of a NN and can be trained more efficiently than most Bayesian NNs. We propose to directly apply NK-induced distributions to guide an upper confidence bound or Thompson sampling-based policy. We show that NK bandits achieve state-of-the-art performance on highly non-linear structured data. Furthermore, we analyze practical considerations such as training frequency and model partitioning. We believe our work will help better understand the impact of utilizing NKs in applied settings.
A Randomized Mirror Descent Algorithm for Large Scale Multiple Kernel Learning
Afkanpour, Arash, György, András, Szepesvári, Csaba, Bowling, Michael
We consider the problem of simultaneously learning to linearly combine a very large number of kernels and learn a good predictor based on the learnt kernel. When the number of kernels $d$ to be combined is very large, multiple kernel learning methods whose computational cost scales linearly in $d$ are intractable. We propose a randomized version of the mirror descent algorithm to overcome this issue, under the objective of minimizing the group $p$-norm penalized empirical risk. The key to achieve the required exponential speed-up is the computationally efficient construction of low-variance estimates of the gradient. We propose importance sampling based estimates, and find that the ideal distribution samples a coordinate with a probability proportional to the magnitude of the corresponding gradient. We show the surprising result that in the case of learning the coefficients of a polynomial kernel, the combinatorial structure of the base kernels to be combined allows the implementation of sampling from this distribution to run in $O(\log(d))$ time, making the total computational cost of the method to achieve an $\epsilon$-optimal solution to be $O(\log(d)/\epsilon^2)$, thereby allowing our method to operate for very large values of $d$. Experiments with simulated and real data confirm that the new algorithm is computationally more efficient than its state-of-the-art alternatives.
Alignment Based Kernel Learning with a Continuous Set of Base Kernels
Afkanpour, Arash, Szepesvari, Csaba, Bowling, Michael
The success of kernel-based learning methods depend on the choice of kernel. Recently, kernel learning methods have been proposed that use data to select the most appropriate kernel, usually by combining a set of base kernels. We introduce a new algorithm for kernel learning that combines a {\em continuous set of base kernels}, without the common step of discretizing the space of base kernels. We demonstrate that our new method achieves state-of-the-art performance across a variety of real-world datasets. Furthermore, we explicitly demonstrate the importance of combining the right dictionary of kernels, which is problematic for methods based on a finite set of base kernels chosen a priori. Our method is not the first approach to work with continuously parameterized kernels. However, we show that our method requires substantially less computation than previous such approaches, and so is more amenable to multiple dimensional parameterizations of base kernels, which we demonstrate.