Goto

Collaborating Authors

 Achlioptas, Panos


Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion Models

arXiv.org Artificial Intelligence

Neural video game simulators emerged as powerful tools to generate and edit videos. Their idea is to represent games as the evolution of an environment's state driven by the actions of its agents. While such a paradigm enables users to play a game action-by-action, its rigidity precludes more semantic forms of control. To overcome this limitation, we augment game models with prompts specified as a set of natural language actions and desired states. The result-a Promptable Game Model (PGM)-makes it possible for a user to play the game by prompting it with high- and low-level action sequences. Most captivatingly, our PGM unlocks the director's mode, where the game is played by specifying goals for the agents in the form of a prompt. This requires learning "game AI", encapsulated by our animation model, to navigate the scene using high-level constraints, play against an adversary, and devise a strategy to win a point. To render the resulting state, we use a compositional NeRF representation encapsulated in our synthesis model. To foster future research, we present newly collected, annotated and calibrated Tennis and Minecraft datasets. Our method significantly outperforms existing neural video game simulators in terms of rendering quality and unlocks applications beyond the capabilities of the current state of the art. Our framework, data, and models are available at https://snap-research.github.io/promptable-game-models/.


Stellar: Systematic Evaluation of Human-Centric Personalized Text-to-Image Methods

arXiv.org Artificial Intelligence

In this work, we systematically study the problem of personalized text-to-image generation, where the output image is expected to portray information about specific human subjects. E.g., generating images of oneself appearing at imaginative places, interacting with various items, or engaging in fictional activities. To this end, we focus on text-to-image systems that input a single image of an individual to ground the generation process along with text describing the desired visual context. Our first contribution is to fill the literature gap by curating high-quality, appropriate data for this task. Namely, we introduce a standardized dataset (Stellar) that contains personalized prompts coupled with images of individuals that is an order of magnitude larger than existing relevant datasets and where rich semantic ground-truth annotations are readily available. Having established Stellar to promote cross-systems fine-grained comparisons further, we introduce a rigorous ensemble of specialized metrics that highlight and disentangle fundamental properties such systems should obey. Besides being intuitive, our new metrics correlate significantly more strongly with human judgment than currently used metrics on this task. Last but not least, drawing inspiration from the recent works of ELITE and SDXL, we derive a simple yet efficient, personalized text-to-image baseline that does not require test-time fine-tuning for each subject and which sets quantitatively and in human trials a new SoTA. For more information, please visit our project's website: https://stellar-gen-ai.github.io/.


LADIS: Language Disentanglement for 3D Shape Editing

arXiv.org Artificial Intelligence

Natural language interaction is a promising direction for democratizing 3D shape design. However, existing methods for text-driven 3D shape editing face challenges in producing decoupled, local edits to 3D shapes. We address this problem by learning disentangled latent representations that ground language in 3D geometry. To this end, we propose a complementary tool set including a novel network architecture, a disentanglement loss, and a new editing procedure. Additionally, to measure edit locality, we define a new metric that we call part-wise edit precision. We show that our method outperforms existing SOTA methods by 20% in terms of edit locality, and up to 6.6% in terms of language reference resolution accuracy. Our work suggests that by solely disentangling language representations, downstream 3D shape editing can become more local to relevant parts, even if the model was never given explicit part-based supervision.