Goto

Collaborating Authors

 United Kingdom


A Tight Lower Bound and Efficient Reduction for Swap Regret

Neural Information Processing Systems

Swap regret, a generic performance measure of online decision-making algorithms, plays an important role in the theory of repeated games, along with a close connection to correlated equilibria in strategic games. This paper shows an (p TN log N)-lower bound for swap regret, where T and N denote the numbers of time steps and available actions, respectively. Our lower bound is tight up to a constant, and resolves an open problem mentioned, e.g., in the book by Nisan et al. [28]. Besides, we present a computationally efficient reduction method that converts no-external-regret algorithms to no-swap-regret algorithms. This method can be applied not only to the full-information setting but also to the bandit setting and provides a better regret bound than previous results.



Explicit Regularisation in Gaussian Noise Injections

Neural Information Processing Systems

We study the regularisation induced in neural networks by Gaussian noise injections (GNIs). Though such injections have been extensively studied when applied to data, there have been few studies on understanding the regularising effect they induce when applied to network activations. Here we derive the explicit regulariser of GNIs, obtained by marginalising out the injected noise, and show that it penalises functions with high-frequency components in the Fourier domain; particularly in layers closer to a neural network's output. We show analytically and empirically that such regularisation produces calibrated classifiers with large classification margins.


Mars: Situated Inductive Reasoning in an Open-World Environment Jiaqi Li

Neural Information Processing Systems

Large Language Models (LLMs) trained on massive corpora have shown remarkable success in knowledge-intensive tasks. Yet, most of them rely on pre-stored knowledge. Inducing new general knowledge from a specific environment and performing reasoning with the acquired knowledge--situated inductive reasoning, is crucial and challenging for machine intelligence. In this paper, we design Mars, an interactive environment devised for situated inductive reasoning. It introduces counter-commonsense game mechanisms by modifying terrain, survival setting and task dependency while adhering to certain principles.


Zero-Shot Reinforcement Learning from Low Quality Data

Neural Information Processing Systems

Zero-shot reinforcement learning (RL) promises to provide agents that can perform any task in an environment after an offline, reward-free pre-training phase. Methods leveraging successor measures and successor features have shown strong performance in this setting, but require access to large heterogenous datasets for pre-training which cannot be expected for most real problems. Here, we explore how the performance of zero-shot RL methods degrades when trained on small homogeneous datasets, and propose fixes inspired by conservatism, a well-established feature of performant single-task offline RL algorithms. We evaluate our proposals across various datasets, domains and tasks, and show that conservative zero-shot RL algorithms outperform their non-conservative counterparts on low quality datasets, and perform no worse on high quality datasets. Somewhat surprisingly, our proposals also outperform baselines that get to see the task during training.


eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling

Neural Information Processing Systems

State-space graphical models and the variational autoencoder framework provide a principled apparatus for learning dynamical systems from data. State-of-the-art probabilistic approaches are often able to scale to large problems at the cost of flexibility of the variational posterior or expressivity of the dynamics model. However, those consolidations can be detrimental if the ultimate goal is to learn a generative model capable of explaining the spatiotemporal structure of the data and making accurate forecasts. We introduce a low-rank structured variational autoencoding framework for nonlinear Gaussian state-space graphical models capable of capturing dense covariance structures that are important for learning dynamical systems with predictive capabilities. Our inference algorithm exploits the covariance structures that arise naturally from sample based approximate Gaussian message passing and low-rank amortized posterior updates - effectively performing approximate variational smoothing with time complexity scaling linearly in the state dimensionality. In comparisons with other deep state-space model architectures our approach consistently demonstrates the ability to learn a more predictive generative model. Furthermore, when applied to neural physiological recordings, our approach is able to learn a dynamical system capable of forecasting population spiking and behavioral correlates from a small portion of single trials.


Last of Us star Isabela Merced trolls Jimmy Fallon over his failed Nicole Kidman date

Mashable

'Last of Us' star Isabela Merced trolls Jimmy Fallon over his failed Nicole Kidman date Mashable Tech Science Life Social Good Entertainment Deals Shopping Games Search Cancel * * Search Result Tech Apps & Software Artificial Intelligence Cybersecurity Cryptocurrency Mobile Smart Home Social Media Tech Industry Transportation All Tech Science Space Climate Change Environment All Science Life Digital Culture Family & Parenting Health & Wellness Sex, Dating & Relationships Sleep Careers Mental Health All Life Social Good Activism Gender LGBTQ Racial Justice Sustainability Politics All Social Good Entertainment Games Movies Podcasts TV Shows Watch Guides All Entertainment SHOP THE BEST Laptops Budget Laptops Dating Apps Sexting Apps Hookup Apps VPNs Robot Vaccuums Robot Vaccum & Mop Headphones Speakers Kindles Gift Guides Mashable Choice Mashable Selects All Sex, Dating & Relationships All Laptops All Headphones All Robot Vacuums All VPN All Shopping Games Product Reviews Adult Friend Finder Bumble Premium Tinder Platinum Kindle Paperwhite PS5 vs PS5 Slim All Reviews All Shopping Deals Newsletters VIDEOS Mashable Shows All Videos Home Entertainment TV Shows By Sam Haysom Sam Haysom Sam Haysom is the Deputy UK Editor for Mashable. He covers entertainment and online culture, and writes horror fiction in his spare time. Read Full Bio on May 21, 2025 Share on Facebook Share on Twitter Share on Flipboard Watch Next'Holland' trailer: Nicole Kidman unravels sinister mystery in too-perfect town'Nine Perfect Strangers' Season 2 trailer: Nicole Kidman heads to the Alps for a bizarre wellness retreat Bella Ramsey and'The Last of Us' team talks Season 2's new characters and Joel in therapy 5:18 'The White Lotus' star Jason Isaacs gives Jimmy Fallon an accent tour of the UK It's been many years since Jimmy Fallon failed to realise he was on a date with Nicole Kidman, opting instead to play video games when she visited his apartment. Appearing on The Tonight Show in the clip above, The Last of Us star used the host's comment aboutNaughty Dog's game to brutally segue back into the topic. "That's gotta be one of the scariest computer games I've ever played in my life, The Last of Us," says Fallon.


BoxE: A Box Embedding Model for Knowledge Base Completion

Neural Information Processing Systems

Knowledge base completion (KBC) aims to automatically infer missing facts by exploiting information already present in a knowledge base (KB). A promising approach for KBC is to embed knowledge into latent spaces and make predictions from learned embeddings. However, existing embedding models are subject to at least one of the following limitations: (1) theoretical inexpressivity, (2) lack of support for prominent inference patterns (e.g., hierarchies), (3) lack of support for KBC over higher-arity relations, and (4) lack of support for incorporating logical rules. Here, we propose a spatio-translational embedding model, called BoxE, that simultaneously addresses all these limitations. BoxE embeds entities as points, and relations as a set of hyper-rectangles (or boxes), which spatially characterize basic logical properties. This seemingly simple abstraction yields a fully expressive model offering a natural encoding for many desired logical properties. BoxE can both capture and inject rules from rich classes of rule languages, going well beyond individual inference patterns. By design, BoxE naturally applies to higher-arity KBs. We conduct a detailed experimental analysis, and show that BoxE achieves state-of-the-art performance, both on benchmark knowledge graphs and on more general KBs, and we empirically show the power of integrating logical rules.


BoxE: A Box Embedding Model for Knowledge Base Completion

Neural Information Processing Systems

Knowledge base completion (KBC) aims to automatically infer missing facts by exploiting information already present in a knowledge base (KB). A promising approach for KBC is to embed knowledge into latent spaces and make predictions from learned embeddings. However, existing embedding models are subject to at least one of the following limitations: (1) theoretical inexpressivity, (2) lack of support for prominent inference patterns (e.g., hierarchies), (3) lack of support for KBC over higher-arity relations, and (4) lack of support for incorporating logical rules. Here, we propose a spatio-translational embedding model, called BoxE, that simultaneously addresses all these limitations. BoxE embeds entities as points, and relations as a set of hyper-rectangles (or boxes), which spatially characterize basic logical properties. This seemingly simple abstraction yields a fully expressive model offering a natural encoding for many desired logical properties. BoxE can both capture and inject rules from rich classes of rule languages, going well beyond individual inference patterns. By design, BoxE naturally applies to higher-arity KBs. We conduct a detailed experimental analysis, and show that BoxE achieves state-of-the-art performance, both on benchmark knowledge graphs and on more general KBs, and we empirically show the power of integrating logical rules.


Reversing the Forget-Retain Objectives: An Efficient LLM Unlearning Framework from Logit Difference

Neural Information Processing Systems

A conventional LLM unlearning task typically involves two goals: (1) The target LLM should forget the knowledge in the specified forget documents, and (2) it should retain the other knowledge that the LLM possesses, for which we assume access to a small number of retain documents. To achieve both goals, a mainstream class of LLM unlearning methods introduces an optimization framework with a combination of two objectives - maximizing the prediction loss on the forget documents while minimizing that on the retain documents, which suffers from two challenges, degenerated output and catastrophic forgetting. In this paper, we propose a novel unlearning framework called Unlearning from Logit Difference (ULD), which introduces an assistant LLM that aims to achieve the opposite of the unlearning goals: remembering the forget documents and forgetting the retain knowledge. ULD then derives the unlearned LLM by computing the logit difference between the target and the assistant LLMs. We show that such reversed objectives would naturally resolve both aforementioned challenges while significantly improving the training efficiency. Extensive experiments demonstrate that our method efficiently achieves the intended forgetting while preserving the LLM's overall capabilities, reducing training time by more than threefold. Notably, our method loses 0% of model utility on the ToFU benchmark, whereas baseline methods may sacrifice 17% of utility on average to achieve comparable forget quality.